首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2351篇
  免费   162篇
  国内免费   3篇
  2023年   17篇
  2022年   32篇
  2021年   54篇
  2020年   40篇
  2019年   35篇
  2018年   57篇
  2017年   69篇
  2016年   96篇
  2015年   136篇
  2014年   166篇
  2013年   152篇
  2012年   187篇
  2011年   186篇
  2010年   129篇
  2009年   91篇
  2008年   135篇
  2007年   116篇
  2006年   129篇
  2005年   122篇
  2004年   113篇
  2003年   96篇
  2002年   69篇
  2001年   22篇
  2000年   16篇
  1999年   27篇
  1998年   22篇
  1997年   16篇
  1996年   13篇
  1995年   13篇
  1994年   18篇
  1993年   3篇
  1992年   17篇
  1991年   10篇
  1990年   7篇
  1989年   6篇
  1988年   4篇
  1987年   11篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   6篇
  1982年   9篇
  1981年   6篇
  1980年   4篇
  1979年   6篇
  1978年   11篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1974年   7篇
排序方式: 共有2516条查询结果,搜索用时 312 毫秒
441.
Plasmids are autonomous genetic elements that can be exchanged between microorganisms via horizontal gene transfer (HGT). Despite the central role they play in antibiotic resistance and modern biotechnology, our understanding of plasmids’ natural ecology is limited. Recent experiments have shown that plasmids can spread even when they are a burden to the cell, suggesting that natural plasmids may exist as parasites. Here, we use mathematical modeling to explore the ecology of such parasitic plasmids. We first develop models of single plasmids and find that a plasmid’s population dynamics and optimal infection strategy are strongly determined by the plasmid’s HGT mechanism. We then analyze models of co-infecting plasmids and show that parasitic plasmids are prone to a “tragedy of the commons” in which runaway plasmid invasion severely reduces host fitness. We propose that this tragedy of the commons is averted by selection between competing populations and demonstrate this effect in a metapopulation model. We derive predicted distributions of unique plasmid types in genomes—comparison to the distribution of plasmids in a collection of 17,725 genomes supports a model of parasitic plasmids with positive plasmid–plasmid interactions that ameliorate plasmid fitness costs or promote the invasion of new plasmids.Subject terms: Theoretical ecology, Microbial ecology  相似文献   
442.
Aims This study explores the patterns of niche differentiation in a group of seven closely related columbines (genus Aquilegia, Ranunculaceae) from the Iberian Peninsula. Populations of these columbines are subject to complex patterns of divergent selection across environments, which partly explain the taxonomic structure of the group. This suggests the hypothesis that niche divergence must have occurred along the process of diversification of the group.Methods We used MaxEnt to build environmental niche models of seven subspecies belonging to the three species of Aquilegia present in the Iberian Peninsula. From these models, we compared the environmental niches through two different approaches: ENMtools and multivariate methods.Important findings MaxEnt distributions conformed closely to the actual distribution of the study taxa. ENMtools methods failed to uncover any clear patterns of niche differentiation or conservatism in Iberian columbines. Multivariate analyses indicate the existence of differentiation along altitudinal gradients and along a gradient of climatic conditions determined by the summer precipitation and temperatures. However, climatic conditions related to winter temperature and precipitation, as well as soil properties, were equally likely to show conservatism or divergence. The complex patterns of niche evolution we found suggest that Iberian Columbines have not been significantly constrained by forces of niche conservatism, so they could respond adaptively to the fast and profound climate changes in the Iberian Peninsula through the glacial cycles of the Pleistocene.  相似文献   
443.
Mitochondria sense,shape and integrate signals,and thus function as central players in cellular signal transduction. Ca2+ waves and redox reactions are two such intracellular signals modulated by mitochondria. Mitochondrial Ca2+ transport is of utmost physio-pathological relevance with a strong impact on metabolism and cell fate. Despite its importance,the molecular nature of the proteins involvedin mitochondrial Ca2+ transport has been revealed only recently. Mitochondrial Ca2+ promotes energy metabolism through the activation of matrix dehydrogenases and downstream stimulation of the respiratory chain. These changes also alter the mitochondrial NAD(P)H/NAD(P)+ ratio,but at the same time will increase reactive oxygen species(ROS) production. Reducing equivalents and ROS are having opposite effects on the mitochondrial redox state,which are hard to dissect. With the recent development of genetically encoded mitochondrial-targeted redoxsensitive sensors,real-time monitoring of matrix thiol redox dynamics has become possible. The discoveries of the molecular nature of mitochondrial transporters of Ca2+ combined with the utilization of the novel redox sensors is shedding light on the complex relation between mitochondrial Ca2+ and redox signals and their impact on cell function. In this review,we describe mitochondrial Ca2+ handling,focusing on a number of newly identified proteins involved in mitochondrial Ca2+ uptake and release. We further discuss our recent findings,revealing how mitochondrial Ca2+ influences the matrix redox state. As a result,mitochondrial Ca2+ is able to modulate the many mitochondrial redox-regulated processes linked to normal physiology and disease.  相似文献   
444.

Background

The arboviruses Zika virus (ZIKV) and Dengue virus (DENV) have important epidemiological impact in Brazil and other tropical regions of the world. Recently, it was shown that previous humoral immunity to DENV enhances ZIKV replication in vitro, which may lead to more severe forms of the disease. Thus, traditional approaches of vaccine development aiming to control viral infection through neutralizing antibodies may induce cross-reactive enhancing antibodies. In contrast, cellular immune response was shown to be capable of controlling DENV infection independently of antibodies. The aim of the present study was to design a flavivirus NS5 protein capable of inducing a cellular immune response against DENV and ZIKV.

Methods

A consensus sequence of ZIKV NS5 protein was designed among isolates from various continents. Epitopes were predicted for the most prevalent alleles of class I and II HLA in the Brazilian population. Then, this epitopes were analyzed with regard to their conservation, population coverage and distribution along the whole antigen.

Results

Nineteen epitopes predicted to be more reactive (percentile rank <1) and 100% conserved among ZIKV and DENV serotypes were selected. The distribution of such epitopes along the protein was shown on a three-dimensional model and population coverage was calculated for different regions of the world. The designed protein was predicted to be stable and the distribution of selected epitopes was shown to be homogeneous along domains. The population coverage of selected epitopes was higher than 50% for most of tropical areas of the world.

Conclusion

Such results indicate that the proposed antigen has the potential to induce protective cellular immune response to ZIKV and DENV in different human populations of the world.
  相似文献   
445.
Grapevine (Vitis genus) is one of the economically most important fruits worldwide. Some species and cultivars are rare and have only a few vines, but represent national heritages with a strong need for preservation. Field collections are labor intensive, and expensive to maintain, and are exposed to natural disasters. In addition, infection with pathogens, especially viruses, is common in grapevine because of vegetative propagation, which is conventionally used for this genus. Cryopreservation provides an alternative and ideal means for the long-term preservation of Vitis germplasm, which can be used as a backup to field collections for important autochthonous cultivars or only as cryo-banks for rare, native cultivars that are worthy of preservation. Cryotherapy, based on cryopreservation protocols, provides an efficient method for the eradication of grapevine viruses. This review provides comprehensive and updated information on cryopreservation for long-term preservation of genetic resources and cryotherapy for virus eradication in Vitis. Additional research in grapevine cryopreservation and cryotherapy is needed.  相似文献   
446.
Understanding how invasive plants affect biodiversity is a crucial conservation need. Numerous studies examine impacts of invasions on birds, but trends in these effects have not been synthesized. We reviewed 128 studies from North America to quantify the frequency of positive, negative, and neutral (non-significant) effects of invasive plants on avian ecology, and then evaluated support for proposed mechanisms of impacts. Our frequency-based approach enabled us to draw value from the full breadth of available literature, including articles that do not provide information necessary for meta-analyses and articles examining understudied phenomena. Total avian abundance and prevalence of individual bird species were usually unaffected by invasion, with 48.9 and 57.2% of tests showing neutral results, respectively. Avian richness decreased with invasion in 41.3% of tests. Although birds often preferred nesting in invasive vegetation (45.0% of tests), effects on nest survival were typically neutral (57.9%). Multiple metrics (e.g. body condition, fledgling survival) have received scant attention. Some of the patterns we highlight differ across ecological contexts, emphasizing the need to understand impact mechanisms. Several studies have directly linked invasion impacts to altered nest-site availability, habitat heterogeneity, and food supplies. There is mixed evidence that plant architecture impacts nest-site selection and nest predation. Our review highlights the nonuniform consequences of biological invasions. The high frequency of reported neutral effects suggests that invasions often have minimal impacts on birds, but positive and negative impacts certainly can arise. Managers considering eradicating invasive plants for avian conservation should monitor impacts locally to determine whether eradication will be beneficial.  相似文献   
447.
Bythotrephes longimanus, an invasive zooplankter from Eurasia, has caused severe declines in native zooplankton communities in Rainy and Kabetogama lakes in northern Minnesota. Both lakes have experienced a 40–60% decrease in peak summer zooplankton biomass following B. longimanus establishment around 2006–2007. In these lakes, yellow perch (Perca flavescens) are a key fishery species, and young-of-the-year (YOY) yellow perch are mainly planktivorous during their first summer. This led to concern that their growth could be detrimentally affected by the depletion of zooplankton forage. We used seining data to compare growth rates of YOY yellow perch before (2001–2005) and after (2008–2012) B. longimanus establishment in Rainy and Kabetogama lakes. Nearby Lake Vermilion, assumed to have been unaffected by B. longimanus during this time period, was used as a reference for natural variation in YOY growth in the region. YOY yellow perch length was modeled as a linear function of cumulative growing degree days (GDD) throughout the summer, and the slope of the relationship was compared between pre- and post-B. longimanus time periods for the three study lakes. The two lakes with B. longimanus showed similar decreases in YOY yellow perch growth rate relative to GDD, whereas Lake Vermilion showed no evidence of a decline in growth rates during this period. The reduction in growth rates resulted in an approximate 10% decrease in mean length of YOY yellow perch at the end of the summer after B. longimanus establishment, which could lead to further effects of this invasive zooplankter at higher trophic levels.  相似文献   
448.
449.
450.
Shortage of freshwater is a serious problem in many regions worldwide, and is expected to become even more urgent over the next decades as a result of increased demand for food production and adverse effects of climate change. Vast water resources in the oceans can only be tapped into if sustainable, energy-efficient technologies for desalination are developed. Energization of desalination by sunlight through photosynthetic organisms offers a potential opportunity to exploit biological processes for this purpose. Cyanobacterial cultures in particular can generate a large biomass in brackish and seawater, thereby forming a low-salt reservoir within the saline water. The latter could be used as an ion exchanger through manipulation of transport proteins in the cell membrane. In this article, we use the example of biodesalination as a vehicle to review the availability of tools and methods for the exploitation of cyanobacteria in water biotechnology. Issues discussed relate to strain selection, environmental factors, genetic manipulation, ion transport, cell-water separation, process design, safety, and public acceptance.Bacteria are commonly employed for the purification of municipal and industrial wastewater but until now, established water treatment technologies have not taken advantage of photosynthetic bacteria (i.e. cyanobacteria). The ability of cyanobacterial cultures to grow at high cell densities with minimal nutritional requirements (e.g. sunlight, carbon dioxide, and minerals) opens up many future avenues for sustainable water treatment applications.Water security is an urgent global issue, especially because many regions of the world are experiencing, or are predicted to experience, water shortage conditions: More than one in six people globally are water stressed, in that they do not have access to safe drinking water (United Nations, 2006). Ninety-seven percent of the Earth’s water is in the oceans; consequently, there are many efforts to develop efficient methods for converting saltwater into freshwater. Various processes using synthetic membranes, such as reverse osmosis, are successfully used for large-scale desalination. However, the high energy consumption of these technologies has limited their application predominantly to countries with both relatively limited freshwater resources and high availability of energy, for example, in the form of oil reserves.The development of an innovative, low-energy biological desalination process, using biological membranes of cyanobacteria, would thus be both attractive and pertinent. The core of the proposed biodesalination process (Fig. 1) is a low-salt biological reservoir within seawater that can serve as an ion exchanger. Its development can be separated into several complementary steps. The first step comprises the selection of a cyanobacterial strain that can be grown to high cell densities in seawater with minimal requirement for energy sources other than those that are naturally available. The environmental conditions during growth can be manipulated to enhance natural extrusion of sodium (Na+) by cyanobacteria. In the second step, cyanobacterial ion transport mechanisms must be manipulated to generate cells in which sodium export is replaced with intracellular sodium accumulation. This will involve inhibition of endogenous Na+ export and expression of synthetic molecular units that facilitate light-driven sodium flux into the cells. A robust control system built from biological switches will be required to achieve precisely timed expression of the salt-accumulating molecular units. The third step consists of engineering efficient separation of the cyanobacterial cells from the desalinated water, using knowledge of physicochemical properties of the cell surface and their natural ability to produce extracellular polymeric substances (EPSs), which aid cell separation while preserving cell integrity. The fourth step integrates the first three steps into a manageable and scalable engineering process. The fifth and final step assesses potential risks and public acceptance issues linked to the new technology.Open in a separate windowFigure 1.Proposed usage of cyanobacterial cultures for water treatment. A, Hypothetical water treatment station. Situated in basins next to the water source, sun-powered cell cultures remove unwanted elements from the water. The clean water is separated from the cells for human uses. The produced biomass is available for other industries. The proposed biodesalination process is based on the following steps. B, Photoautotrophic cells divide to generate high-density cultures. C, The combined cell volume is low in salt as a result of transport proteins in the cell membrane that export sodium using photosynthetically generated energy. D, Through environmental and genetic manipulation, salt export is inhibited and replaced with transport modules that accumulate salt inside the cells. This process is again fueled by light energy. E, Manipulation of cell surface properties separates the salt-enriched cells from the desalinated water.In this review, we outline the state of knowledge and available technology for each of the steps, as well as summarize the current knowledge gaps and technical limitations in employing a large-scale water treatment process using cyanobacteria. Before discussing these issues, we provide some background information on the usage of cyanobacteria in biotechnology and the impact of sodium on cellular functions of cyanobacteria. The example of biodesalination provides a good vehicle to discuss the suitability of photosynthetic bacteria for water treatment more generally. The issues addressed in this review are relevant for a wide range of biotechnological applications of cyanobacteria, including bioremediation and biodegradation as well as the generation of biofuels, natural medicines, or cosmetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号