首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   582篇
  免费   31篇
  国内免费   1篇
  2021年   15篇
  2020年   3篇
  2019年   11篇
  2018年   14篇
  2017年   14篇
  2016年   15篇
  2015年   33篇
  2014年   26篇
  2013年   19篇
  2012年   53篇
  2011年   54篇
  2010年   21篇
  2009年   19篇
  2008年   31篇
  2007年   34篇
  2006年   40篇
  2005年   30篇
  2004年   21篇
  2003年   18篇
  2002年   19篇
  2001年   12篇
  2000年   14篇
  1999年   12篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1992年   2篇
  1990年   2篇
  1989年   7篇
  1988年   3篇
  1987年   9篇
  1986年   6篇
  1985年   2篇
  1984年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   6篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1965年   3篇
  1961年   1篇
  1959年   1篇
  1936年   1篇
排序方式: 共有614条查询结果,搜索用时 19 毫秒
551.
RNA interference (RNAi) is rapidly becoming a valuable tool in biological studies, as it allows the selective and transient knockdown of protein expression. The short-interfering RNAs (siRNAs) transiently silence gene expression. By contrast, the expressed short-hairpin RNAs induce long-term, stable knockdown of their target gene. Trichoplusia ni (T. ni) cells are widely used for mammalian cell-derived glycoprotein expression using the baculovirus system. However, a suitable shRNA expression system has not been developed yet. We investigated the potency of shRNA-mediated gene expression inhibition using human and Drosophila U6 promoters in T. ni cells. Luciferase, EGFP, and beta-N-acetylglucosaminidase (GlcNAcase) were employed as targets to investigate knockdown of specific genes in T. ni cells. Introduction of the shRNA expression vector under the control of human U6 or Drosophila U6 promoter into T. ni cells exhibited the reduced level of luciferase, EGFP, and beta-N-acetylglucosaminidase compared with that of untransfected cells. The shRNA was expressed and processed to siRNA in our vector-transfected T. ni cells. GlcNAcase mRNA levels were down-regulated in T. ni cells transfected with shRNA vectors-targeted GlcNAcase as compared with the control vector-treated cells. It implied that our shRNA expression vectors using human and Drosophila U6 promoters were applied in T. ni cells for the specific gene knockdown.  相似文献   
552.
Cigarette smoking causes apoptotic death, senescence, and impairment of repair functions in lung fibroblasts, which maintain the integrity of alveolar structure by producing extracellular matrix (ECM) proteins. Therefore, recovery of lung fibroblasts from cigarette smoke-induced damage may be crucial in regeneration of emphysematous lung resulting from degradation of ECM proteins and subsequent loss of alveolar cells. Recently, we reported that bone marrow-derived mesenchymal stem cell-conditioned media (MSC-CM) led to angiogenesis and regeneration of lung damaged by cigarette smoke. In this study, to further investigate reparative mechanisms for MSC-CM-mediated lung repair, we attempted to determine whether MSC-CM can recover lung fibroblasts from cigarette smoke-induced damage. In lung fibroblasts exposed to cigarette smoke extract (CSE), MSC-CM, not only inhibited apoptotic death, but also induced cell proliferation and reversed CSE-induced changes in the levels of caspase-3, p53, p21, p27, Akt, and p-Akt. MSC-CM also restored expression of ECM proteins and collagen gel contraction while suppressing CSE-induced expression of cyclooxygenase-2 and microsomal PGE(2) synthase-2. The CSE-opposing effects of MSC-CM on cell fate, expression of ECM proteins, and collagen gel contraction were partially inhibited by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. In rats, MSC-CM administration also resulted in elevation of p-Akt and restored proliferation of lung fibroblasts, which was suppressed by exposure to cigarette smoke. Taken together, these data suggest that MSC-CM may recover lung fibroblasts from cigarette smoke-induced damage, possibly through inhibition of apoptosis, induction of proliferation, and restoration of lung fibroblast repair function, which are mediated in part by the PI3K/Akt pathway.  相似文献   
553.
Increasing demands for petroleum have stimulated sustainable ways to produce chemicals and biofuels. Specifically, fatty acids of varying chain lengths (C6–C16) naturally synthesized in many organisms are promising starting points for the catalytic production of industrial chemicals and diesel-like biofuels. However, bio-production of fatty acids from plants and other microbial production hosts relies heavily on manipulating tightly regulated fatty acid biosynthetic pathways. In addition, precursors for fatty acids are used along other central metabolic pathways for the production of amino acids and biomass, which further complicates the engineering of microbial hosts for higher yields. Here, we demonstrate an iterative metabolic engineering effort that integrates computationally driven predictions and metabolic flux analysis techniques to meet this challenge. The OptForce procedure was used for suggesting and prioritizing genetic manipulations that overproduce fatty acids of different chain lengths from C6 to C16 starting with wild-type E. coli. We identified some common but mostly chain-specific genetic interventions alluding to the possibility of fine-tuning overproduction for specific fatty acid chain lengths. In accordance with the OptForce prioritization of interventions, fabZ and acyl-ACP thioesterase were upregulated and fadD was deleted to arrive at a strain that produces 1.70 g/L and 0.14 g fatty acid/g glucose (~39% maximum theoretical yield) of C14–16 fatty acids in minimal M9 medium. These results highlight the benefit of using computational strain design and flux analysis tools in the design of recombinant strains of E. coli to produce free fatty acids.  相似文献   
554.
Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins.  相似文献   
555.
556.
Postsynaptic complexin controls AMPA receptor exocytosis during LTP   总被引:1,自引:0,他引:1  
Long-term potentiation (LTP) is a compelling synaptic correlate of learning and memory. LTP induction requires NMDA receptor (NMDAR) activation, which triggers SNARE-dependent exocytosis of AMPA receptors (AMPARs). However, the molecular mechanisms mediating AMPAR exocytosis induced by NMDAR activation remain largely unknown. Here, we show that complexin, a protein that regulates neurotransmitter release via binding to SNARE complexes, is essential for AMPAR exocytosis during LTP but not for the constitutive AMPAR exocytosis that maintains basal synaptic strength. The regulated postsynaptic AMPAR exocytosis during LTP requires binding of complexin to SNARE complexes. In hippocampal neurons, presynaptic complexin acts together with synaptotagmin-1 to mediate neurotransmitter release. However, postsynaptic synaptotagmin-1 is not required for complexin-dependent AMPAR exocytosis during LTP. These results suggest?a complexin-dependent molecular mechanism for regulating AMPAR delivery to synapses, a mechanism that is surprisingly similar to presynaptic exocytosis but controlled by regulators other than synaptotagmin-1.  相似文献   
557.

BACKGROUND:

Chronic myeloid leukemia (CML) is a clonal myeloproliferative expansion of primitive hematopoietic progenitor cells.

MATERIALS AND METHODS:

In the present study, CML samples were collected from various hospitals in Amritsar, Jalandhar and Ludhiana.

RESULTS:

Chromosomal alterations seen in peripheral blood lymphocytes of these treated and untreated cases of CML were satellite associations, double minutes, random loss, gain of C group chromosomes and presence of marker chromosome. No aberrations were observed in control samples. Karyotypic abnormalities have also been noted in the Ph-negative cells of some patients in disease remission.

CONCLUSION:

This is a novel phenomenon whose prognostic implications require thorough and systematic evaluation.  相似文献   
558.
Objective: Wheat-related disorders are a spectrum of disorders associated with different autoimmune and non-autoimmune diseases. However, it is unclear whether these wheat-related disorders lead to adverse health effects such as cardiovascular risk, nutritional deficiencies etc. The objective of the study was to explore the lipid profiles and the nutritional status of subjects with wheat-related disorders to understand the potential threat of wheat on cardiovascular risk and nutritional deficiency.

Method: A total of 1041 subjects who showed wheat-related symptoms were initially tested for the wheat protein antibody panel (Wheat Zoomer (WZ) panel and Coeliac Disease (CD) panel), then for cardiovascular panel and the micronutrient panel at Vibrant America Clinical Laboratory.

Results: Subjects with both Wheat Zoomer positivity (WZ+) and Coeliac Disease positivity (CD+) had significantly low levels of high-density lipoproteins (HDL) (279/483(57.8%) and 29/47(61.7%) respectively), but only subjects with WZ?+?had low levels of Apo A1 (44/424(9.5%)), and high levels of Omega 6 fatty acids (53/334(15.9%)). None of the micronutrients tested showed a significant imbalance in WZ?+?subjects.

Conclusion: Subjects with positive serology for WZ have deranged blood lipid profiles but did not show any significant micronutrient deficiency. Hence, our results showcase a significant association of wheat-related disorders to cardiovascular risk.  相似文献   

559.
Carbon dioxide (CO2) is one of the end products of fuel combustion and the major component of the greenhouse gases. The reduction of atmospheric CO2 not only decreases environmental pollution but also produces value‐added chemicals, solving energy and environment issues simultaneously. One significant challenge is the low conversion efficiency of CO2 reduction due to the inertness of the CO2 molecule. The design of the catalyst nanomaterials with the high selectivity, stability, and the activation capabilities for the conversion of CO2 is needed. Atomic layer deposition (ALD), capable of constructing catalysts with atomic‐level precision in a highly controllable manner, is a promising technique to address the key problems in CO2 reduction. This review explores the application of ALD in CO2 reduction, emphasizing the designs of the efficient catalyst nanomaterials fabricated by the ALD technique and their applications in CO2 reduction and capture. The significance of the ALD catalysts with the fine structures is highlighted to obtain a better understanding of the catalytic performance–aimed benefits as well as an outlook on the ALD‐designed catalysts for the reduction of CO2.  相似文献   
560.
Rich information on point mutation studies is scattered across heterogeneous data sources. This paper presents an automated workflow for mining mutation annotations from full-text biomedical literature using natural language processing (NLP) techniques as well as for their subsequent reuse in protein structure annotation and visualization. This system, called mSTRAP (Mutation extraction and STRucture Annotation Pipeline), is designed for both information aggregation and subsequent brokerage of the mutation annotations. It facilitates the coordination of semantically related information from a series of text mining and sequence analysis steps into a formal OWL-DL ontology. The ontology is designed to support application-specific data management of sequence, structure, and literature annotations that are populated as instances of object and data type properties. mSTRAPviz is a subsystem that facilitates the brokerage of structure information and the associated mutations for visualization. For mutated sequences without any corresponding structure available in the Protein Data Bank (PDB), an automated pipeline for homology modeling is developed to generate the theoretical model. With mSTRAP, we demonstrate a workable system that can facilitate automation of the workflow for the retrieval, extraction, processing, and visualization of mutation annotations -- tasks which are well known to be tedious, time-consuming, complex, and error-prone. The ontology and visualization tool are available at (http://datam.i2r.a-star.edu.sg/mstrap).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号