首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3014篇
  免费   188篇
  国内免费   2篇
  3204篇
  2023年   14篇
  2022年   36篇
  2021年   94篇
  2020年   52篇
  2019年   63篇
  2018年   69篇
  2017年   57篇
  2016年   96篇
  2015年   128篇
  2014年   180篇
  2013年   213篇
  2012年   243篇
  2011年   241篇
  2010年   197篇
  2009年   133篇
  2008年   131篇
  2007年   150篇
  2006年   141篇
  2005年   140篇
  2004年   83篇
  2003年   96篇
  2002年   96篇
  2001年   40篇
  2000年   50篇
  1999年   38篇
  1998年   25篇
  1997年   17篇
  1996年   14篇
  1995年   18篇
  1993年   12篇
  1992年   24篇
  1991年   10篇
  1990年   12篇
  1989年   19篇
  1988年   18篇
  1987年   10篇
  1986年   21篇
  1985年   22篇
  1984年   14篇
  1982年   12篇
  1981年   11篇
  1980年   12篇
  1979年   13篇
  1978年   17篇
  1976年   9篇
  1975年   8篇
  1973年   13篇
  1972年   11篇
  1971年   10篇
  1969年   8篇
排序方式: 共有3204条查询结果,搜索用时 11 毫秒
101.
The identification of proteins which determine fat and lean body mass composition is critical to better understanding and treating human obesity. TDP-43 is a well-conserved RNA-binding protein known to regulate alternative splicing and recently implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). While TDP-43 knockout mice show early embryonic lethality, post-natal conditional knockout mice show weight loss, fat depletion, and rapid death, suggesting an important role for TDP-43 in regulating energy metabolism. Here we report, that over-expression of TDP-43 in transgenic mice can result in a phenotype characterized by increased fat deposition and adipocyte hypertrophy. In addition, TDP-43 over-expression in skeletal muscle results in increased steady state levels of Tbc1d1, a RAB-GTPase activating protein involved in Glucose 4 transporter (Glut4) translocation. Skeletal muscle fibers isolated from TDP-43 transgenic mice show altered Glut4 translocation in response to insulin and impaired insulin mediated glucose uptake. These results indicate that levels of TDP-43 regulate body fat composition and glucose homeostasis in vivo.  相似文献   
102.
Unraveling the metabolic and phytohormonal changes in anthers exposed to heat stress would help identify mechanisms regulating heat stress tolerance during the sensitive reproductive stage. Two spring wheat genotypes contrasting for heat tolerance were exposed to heat stress during heading in controlled environment chambers. Anthers were collected from main and primary spikes for metabolic and phytohormonal profiling. A significant reduction in seed set (38%), grain number (54%) and grain weight (52%) per plant was recorded in the sensitive (KSG1177) but not in the tolerant (KSG1214) genotype under heat stress compared to control. Anther metabolite accumulation did not vary quantitatively between main and primary spikes. Hierarchical clustering of the genotypes and treatments using metabolites and phytohormones revealed a distinct cluster for KSG1177 under heat stress from that of control and KSG1214. A significant increase in N-based amino acids, ABA, IAA-conjugate and a decrease in polyamines and organic acids were observed in wheat anthers exposed to heat stress. Unlike KSG1214, a significantly higher accumulation of amino acids, ABA and IAA-conjugate in anthers of the sensitive KSG1177 was recorded under heat stress. These findings provide the rationale and direction towards developing molecular markers for enhancing heat stress tolerance in wheat.  相似文献   
103.
104.
105.
A series of well-orchestrated events help in the chromatin condensation and the formation of chromosomes. Apart from the formation of chromosomes, maintenance of their structure is important, especially for the cell division. The structural maintenance of chromosome (SMC) proteins, the non-SMC proteins and the SMC complexes are critical for the maintenance of chromosome structure. While condensins have roles for the DNA compaction, organization, and segregation, the cohesin functions in a cyclic manner through the cell cycle, as a “cohesin cycle.” Specific mechanisms maintain the architecture of the centromere, the kinetochore and the telomeres which are in tandem with the cell cycle checkpoints. The presence of chromosomal territories and compactness differences through the length of the chromosomes might have implications on selective susceptibility of specific chromosomes for induced genotoxicity.  相似文献   
106.
Escherichia coli Exonuclease I (ExoI) digests single-stranded DNA (ssDNA) in the 3′-5′ direction in a highly processive manner. The crystal structure of ExoI, determined previously in the absence of DNA, revealed a C-shaped molecule with three domains that form a central positively charged groove. The active site is at the bottom of the groove, while an extended loop, proposed to encircle the DNA, crosses over the groove. Here, we present crystal structures of ExoI in complex with four different ssDNA substrates. The structures all have the ssDNA bound in essentially the predicted manner, with the 3′-end in the active site and the downstream end under the crossover loop. The central nucleotides of the DNA form a prominent bulge that contacts the SH3-like domain, while the nucleotides at the downstream end of the DNA form extensive interactions with an ‘anchor’ site. Seven of the complexes are similar to one another, but one has the ssDNA bound in a distinct conformation. The highest-resolution structure, determined at 1.95 Å, reveals an Mg2+ ion bound to the scissile phosphate in a position corresponding to MgB in related two-metal nucleases. The structures provide new insights into the mechanism of processive digestion that will be discussed.  相似文献   
107.
In this study, the in vitro potential of 42 Trichoderma spp. were evaluated against four isolates of soil borne phytopathogenic fungi viz., Rhizoctonia solani, Macrophomina sp., Sclerotium rolfsii and Pythium aphanidermatum in dual culture techniques and through production of volatile and non-volatile inhibitors. In vitro screening results showed that the proportion of isolates with antagonistic activities was highest for the S. rolfsii followed by R. solani, Macrophomina sp. and P. aphanidermatum, respectively. The isolates TNT1, TNP2 and TWP1 showed consistent results in volatile and non-volatile activity in vitro against any of the two pathogens tested. Based on genomic finger prints, potential isolates showed no particular correlation between the origin of the isolates and the Random Amplified Polymorphic DNA (RAPD) groups could not be established. However, the polymorphism shown by the isolates did not correlate to their level of antagonism. Whereas, in physiology studies using BIOLOG (microbial identification system), three groups were formed, one group consists with 14 different Trichoderma species and two groups with two isolates each comprised of only T. koningii and T. viride.  相似文献   
108.
Peanut yellow spot virus (PYSV) was efficiently transmitted by Scirtothrips dorsalis Hood in groundnut. Larvae could acquire the virus in 30 min and the maximum percentage transmission of 43.8% by individual insects resulted following two days AAP. Single adult Thrip transmitted the virus after minimum IAP of 30 minutes. The percentage transmission (33.3%) increased linearly with an increase in IAP up to 1.5 days and maximum up to 55 h of IAP (36.1%). PYSV persistently transmitted more than 75% of their life span.  相似文献   
109.
TGase 2 is over-expressed in a variety of inflammatory diseases including allergic asthma. This study aimed to investigate the role of TGase 2 on IgE production and signaling pathways in mast cell activation related to OVA-induced allergic asthma. Bone marrow-derived mast cells (BMMCs) isolated from WT or TGase 2?/? mice were activated with Ag/Ab (refer to act-WT-BMMCs and act-KO-BMMCs, respectively). B cells isolated from splenocytes were activated with anti-mouse IgM (act-B cells), and B cells were co-cultured with BMMCs. WT and TGase 2?/? mice were sensitized and challenged with OVA adsorbed in alum hydroxide. Intracellular Ca2 + ([Ca2 +]i) levels were determined by fluorescence intensity; IgE, mediators and TGase 2 activity by ELISA; the CD138 expression by FACS analyzer; cell surface markers and signal molecules by Western blot; NF-κB by EMSA; co-localization of mast cells and B cells by immunohistochemistry; Fcε RI-mediated mast cell activation by PCA test; expression of cytokines, MMPs, TIMPs, TLR2 and Fc?RI by RT-PCR. In vitro, act-KO-BMMCs reduced the [Ca2 +]i levels, NF-κB activity, expression of CD40/CD40L, plasma cells, total IgE levels and TGase 2 activity in act-B cells co-cultured with act-BMMCs, expression of inflammatory cytokines and MMPs2/9, release of mediators (TNF-α, LTs and cytokines), and activities of signal molecules (PKCs, MAP kinases, I-κB and PLA2), which were all increased in act-WT-BMMCs. TGase 2 siRNA transfected/activated-BMMCs reduced all responses as same as those in act-KO-BMMCs. In allergic asthma model, TGase 2?/? mice protected against PCA reaction, OVA-specific IgE production and AHR, and they reduced co-localization of mast cells and B cells or IgE in lung tissues, expression and co-localization of surface molecules in mast cells (c-kit and CD40L) and B cells (CD23 and CD40), inflammatory cells including mast cells, goblet cells, amounts of collagen and mediator release in BAL fluid and/or lung tissues, which were all increased in WT mice. TLR expression in TGase 2?/? mice did not differ from those in WT mice. Our data suggest that TGase 2 expression and Ca2 + influx required by bidirectional events in mast cell activation facilitate IgE production in B cells via up-regulating mast cell CD40L expression, and induce the expression of numerous signaling molecules associated with airway inflammation and remodeling in allergic asthma.  相似文献   
110.
Abstract

Starting with a brief history of solid-state fermentation (SSF), major aspects of SSF are reviewed, which include factors affecting SSF, biomass, fermentors, modeling, industrial microbial enzymes, organic acids, secondary metabolites, and bioremediation. Physico-chemical and environmental factors such as inoculum type, moisture and water activity, pH, temperature, substrate, particle size, aeration and agitation, nutritional factors, and oxygen and carbon dioxide affecting SSF are reviewed. The advantages of SSF over Submerged Fermentation (SmF) are indicated, and the different types of fermentors used in SSF described. The economic feasibilities of adopting SSF technology in the commercial production of industrial enzymes such as amylases, cellulases, xylanase, proteases, phytases, lipases, etc., organic acids such as citric acid and lactic acid, and secondary metabolites such as gibberellic acid, ergot alkaloids, and antibiotics such as penicillin, cyclosporin, cephamycin and tetracyclines are highlighted. The relevance of applying SSF technology in the production of mycotoxins, biofuels, and biocontrol agents is discussed, and the need for adopting SSF technology in bioremediation of toxic compounds, biological detoxication of agro-industrial residues, and biotransformation of agro-products and residues is emphasized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号