首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   9篇
  99篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   11篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   8篇
  2003年   9篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1958年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
71.
Soluble methane monooxygenase (sMMO) from Methylosinus trichosporium OB3b can degrade many halogenated aliphatic compounds that are found in contaminated soil and groundwater. This enzyme oxidizes the most frequently detected pollutant, trichloroethylene (TCE), at least 50 times faster than other enzymes. However, slow growth of the strain, strong competition between TCE and methane for sMMO, and repression of the smmo locus by low concentrations of copper ions limit the use of this bacterium. To overcome these obstacles, the 5.5-kb smmo locus of M. trichosporium OB3b was cloned into a wide-host-range vector (to form pSMMO20), and this plasmid was electroporated into five Pseudomonas strains. The best TCE degradation results were obtained with Pseudomonas putida F1/pSMMO20. The plasmid was maintained stably, and all five of the sMMO proteins (alpha, beta, and gamma hydroxylase proteins, reductase, and component B) were observed clearly by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblotting. TCE degradation rates were quantified for P. putida F1/pSMMO20 with a gas chromatograph (Vmax = 5 nmol per min per mg of protein), and the recombinant strain mineralized 55% of the TCE (10 microM) as indicated by measuring chloride ion concentrations with a chloride ion-specific electrode. The maximum TCE degradation rate obtained with the recombinant strain was lower than that of M. trichosporium OB3b but greater than other TCE-degrading recombinants and most well-studied pseudomonads. In addition, this recombinant strain mineralizes chloroform (a specific substrate for sMMO), grows much faster than M. trichosporium OB3b, and degrades TCE without competitive inhibition from the growth substrate.  相似文献   
72.
The T1 domain, a highly conserved cytoplasmic portion at the N-terminus of the voltage-dependent K+ channel (Kv) alpha-subunit, is responsible for driving and regulating the tetramerization of the alpha-subunits. Here we report the identification of a set of mutations in the T1 domain that alter the gating properties of the Kv channel. Two mutants produce a leftward shift in the activation curve and slow the channel closing rate while a third mutation produces a rightward shift in the activation curve and speeds the channel closing rate. We have determined the crystal structures of T1 domains containing these mutations. Both of the leftward shifting mutants produce similar conformational changes in the putative membrane facing surface of the T1 domain. These results suggest that the structure of the T1 domain in this region is tightly coupled to the channel's gating states.  相似文献   
73.
74.
Saccharomyces cerevisiae was engineered to express different amount of heavy (H)- and light (L)-chain subunits of human ferritin by using a low-copy integrative vector (YIp) and a high-copy episomal vector (YEp). In addition to pep4::HIS3 allele, the expression host strain was bred to have the selection markers leu2 and ura3 for YIplac128 and YEp352, respectively. The heterologous expression of phytase was used to determine the expression capability of the host strain. Expression in the new host strain (2805-a7) was as high as that in the parental strain (2805), which expresses high levels of several foreign genes. Following transformation, Northern and Western blot analyses demonstrated the expression of H- and L-chain genes. The recombinant yeast was more iron tolerant, in that transformed cells formed colonies on plates containing more than 25 mM ferric citrate, whereas none of the recipient strain cells did. Prussian blue staining indicated that the expressed isoferritins were assembled in vivo into a complex that bound iron. The expressed subunits showed a clear preference for the formation of heteropolymers over homopolymers. The molar ratio of H to L chains was estimated to be 1:6.8. The gel-purified heteropolymer took up iron faster than the L homopolymer, and it took up more iron than the H homopolymer did. The iron concentrations in transformants expressing the heteropolymer, L homopolymer, and H homopolymer were 1,004, 760, and 500 μg per g (dry weight) of recombinant yeast cells, respectively. The results indicate that heterologously expressed H and L subunits coassemble into a heteropolymer in vivo and that the iron-carrying capacity of yeast is further enhanced by the expression of heteropolymeric isoferritin.  相似文献   
75.
This study was conducted to determine if the stress-responsive hypothalamic-nucleus accumbens (NAc) regulation is a stressor specific event. Male SD rats were subjected to restraint or cold stress for 2 h, and then mRNA expression of corticotropin-releasing hormone (CRH) in the hypothalamic paraventricular nucleus (PVN) was examined by in situ hybridization and the plasma corticosterone levels by radioimmunoassay. Neuronal activations in the PVN and the NAc were examined by c-Fos immunohistochemistry and the brain GABA contents by HPLC. Both restraint and cold stresses increased c-Fos expression in the PVN and the plasma corticosterone; however, CRH expression in PVN was increased only by restraint, but not by cold, stress. Restraint stress significantly increased the NAc neuronal activation, but cold stress failed to do so. Restraint stress increased the NAc-GABA contents and cold stress did the hypothalamic GABA. Results suggest that the HPA axis regulation responding to restraint stress, but not cold stress, may involve the NAc neuronal activation in relation with GABAergic neurotransmission. Additionally, CRH expression in the PVN may not play a major role in the elevation of plasma corticosterone responding to cold stress.  相似文献   
76.
77.
Aims: Salmonella spp. are an important cause of food‐borne infections throughout world, and the availability of rapid and simple detection techniques is critical for the food industry. Salmonella enterica serovars Enteritidis and Typhimurium cause the majority of human gastroenteritis infections, and there are a reported 40 000 cases of salmonellosis in the United States each year. Methods and Results: A novel rapid and simple isothermal target and probe amplification (iTPA) assay that rapidly amplifies target DNA (Salmonella invA gene) using a FRET‐based signal probe in an isothermal environment was developed for detection Salmonella spp. in pre‐enriched food samples. The assay was able to specifically detect all of 10 Salmonella spp. strains without detecting 40 non‐Salmonella strains. The detection limit was 4 × 101 CFU per assay. The iTPA assay detected at an initial inoculum level of <10 CFU in the pre‐enriched food samples (egg yolk, chicken breast and peanut butter). Conclusions: This detection system requires only a water bath and a fluorometer and has great potential for use as a hand‐held device or point‐of‐care‐testing diagnostics. The iTPA assay is sensitive and specific and has potential for rapid screening of Salmonella spp. by food industry.  相似文献   
78.
Centrioles play a crucial role in mitotic spindle assembly and duplicate precisely once per cell cycle. In worms, flies, and humans, centriole assembly is dependent upon a key regulatory kinase (ZYG-1/Sak/Plk4) and its downstream effectors SAS-5 and SAS-6. Here we report a role for protein phosphatase 2A (PP2A) in centriole duplication. We find that the PP2A catalytic subunit LET-92, the scaffolding subunit PAA-1, and the B55 regulatory subunit SUR-6 function together to positively regulate centriole assembly. In PP2A-SUR-6-depleted embryos, the levels of ZYG-1 and SAS-5 are reduced and the ZYG-1- and SAS-5-dependent recruitment of SAS-6 to the nascent centriole fails. We show that PP2A physically associates with SAS-5 in vivo and that inhibiting proteolysis can rescue SAS-5 levels and the centriole duplication defect of PP2A-depleted embryos. Together, our findings indicate that PP2A-SUR-6 promotes centriole assembly by protecting ZYG-1 and SAS-5 from degradation.  相似文献   
79.
Abstract: Aromatic l -amino acid decarboxylase (AADC) is found in both neuronal cells and nonneuronal cells, and a single gene encodes rat AADC in both neuronal and nonneuronal tissues. However, two cDNAs for this enzyme have been identified: one from the liver and the other from pheochromocytoma. Exons 1a and 1b are found in the liver cDNA and the pheochromocytoma cDNA, respectively. In the third exon (exon 2), there are two alternatively utilized splicing acceptors specific to these exons, 1a and 1b. Structural analysis of the rat AADC gene showed that both alternative promoter usage and alternative splicing are operative for the differential expression of this gene. To demonstrate whether alternative promoter usage and splicing are tissue specific and whether the exons 1a and 1b are differentially and specifically transcribed in nonneuronal and neuronal cells, respectively, in situ hybridization histochemistry for the rat brain, adrenal gland, liver, and kidney was carried out using these two exon probes. The exon 1a probe specifically identified AADC mRNA only in nonneuronal cells, including the liver and kidney, and the exon 1b probe localized AADC mRNA to monoaminergic neurons in the CNS and the adrenal medulla. Thus, both alternative promoter usage and differential splicing are in fact operative for the tissue-specific expression of the rat AADC gene.  相似文献   
80.
An automated continuous toxicity test system was developed using a recombinant bioluminescent freshwater bacterium. The groundwater-borne bacterium, Janthinobacterium lividum YH9-RC, was modified with luxAB and optimized for toxicity tests using different kinds of organic carbon compounds and heavy metals. luxAB-marked YH9-RC cells were much more sensitive (average 7.3-8.6 times) to chemicals used for toxicity detection than marine Vibrio fischeri cells used in the Microtox assay. Toxicity tests for wastewater samples using the YH9-RC-based toxicity assay showed that EC50-5 min values in an untreated raw wastewater sample (23.9 +/- 12.8%) were the lowest, while those in an effluent sample (76.7 +/- 14.9%) were the highest. Lyophilization conditions were optimized in 384-multiwell plates containing bioluminescent bacteria that were pre-incubated for 15 min in 0.16 M of trehalose prior to freeze-drying, increasing the recovery of bioluminescence and viability by 50%. Luminously modified cells exposed to continuous phenol or wastewater stream showed a rapid decrease in bioluminescence, which fell below detectable range within 1 min. An advanced toxicity test system, featuring automated real-time toxicity monitoring and alerting functions, was designed and finely tuned. This novel continuous toxicity test system can be used for real-time biomonitoring of water toxicity, and can potentially be used as a biological early warning system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号