排序方式: 共有137条查询结果,搜索用时 15 毫秒
21.
The nutritional status of under-five children is a sensitive sign of a country's health status as well as economic condition. This study investigated the differential impact of some demographic, socioeconomic, environmental and health-related factors on the nutritional status among under-five children in Bangladesh using Bangladesh Demographic and Health Survey 2007 data. Two-level random intercept binary logistic regression models were used to identify the determinants of under-five malnutrition. The analyses revealed that 16% of the children were severely stunted and 25% were moderately stunted. Among the children under five years of age 3% were severely wasted and 14% were moderately wasted. Furthermore, 11% of the children were severely underweight and 28% were moderately underweight. The main contributing factors for under-five malnutrition were found to be child's age, mother's education, father's education, father's occupation, family wealth index, currently breast-feeding, place of delivery and division. Significant community-level variations were found in the analyses. 相似文献
22.
S. Ali M. A. Farooq M. M. Jahangir F. Abbas S. A. Bharwana G. P. Zhang 《Biologia Plantarum》2013,57(4):758-763
The effect of nitrogen forms on photosynthesis and anti-oxidative systems of barley plants under chromium stress was studied in a hydroponic experiment. The treatments comprised three chromium concentrations (0, 75, and 100 μM) and three N forms (NH4)2SO4, urea, and Ca(NO3)2. In comparison with the urea or (NH4)2SO4 fed plants, the Ca(NO3)2 fed plants had higher net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, transpiration rate, photosynthetically active radiation utilization efficiency, variable to maximum chlorophyll fluorescence ratio, and the content of chlorophylls and carotenoids. Cr toxicity caused oxidative stress in all plants but the Ca(NO3)2 fed plants had the least oxidative stress. Moreover, the Ca(NO3)2 fed plants had higher activities of anti-oxidative enzymes and content of non-enzymatic antioxidants than the urea or (NH4)2SO4 fed plants. In addition, the Ca(NO3)2 fed plants had higher N and lower Cr content in all plant tissues than the urea or (NH4)2SO4 fed plants. The current results indicate that the reasonable choice of N fertilizer is important for barley production on the Cr-contaminated soils. 相似文献
23.
Distinct nuclear gene expression profiles in cells with mtDNA depletion and homoplasmic A3243G mutation 总被引:2,自引:0,他引:2
Jahangir Tafrechi RS Svensson PJ Janssen GM Szuhai K Maassen JA Raap AK 《Mutation research》2005,578(1-2):43-52
The pathobiochemical pathways determining the wide variability in phenotypic expression of mitochondrial DNA (mtDNA) mutations are not well understood. Most pathogenic mtDNA mutations induce a general defect in mitochondrial respiration and thereby ATP synthesis. Yet phenotypic expression of the different mtDNA mutations shows large variations that are difficult to reconcile with ATP depletion as sole pathogenic factor, implying that additional mechanisms contribute to the phenotype. Here, we use DNA microarrays to identify changes in nuclear gene expression resulting from the presence of the A3243G diabetogenic mutation and from a depletion of mtDNA (rho0 cells). We find that cells respond mildly to these mitochondrial states with both general and specific changes in nuclear gene expression. This observation indicates that cells can sense the status of mtDNA. A number of genes show divergence in expression in rho0 cells compared to cells with the A3243G mutation, such as genes involved in oxidative phosphorylation. As a common response in A3243G and rho0 cells, mRNA levels for extracellular matrix genes are up-regulated, while the mRNA levels of genes involved in ubiquitin-mediated protein degradation and in ribosomal protein synthesis is down-regulated. This reduced expression is reflected at the level of cytosolic protein synthesis in both A3243G and rho0 cells. Our finding that mitochondrial dysfunction caused by different mutations affects nuclear gene expression in partially distinct ways suggests that multiple pathways link mitochondrial function to nuclear gene expression and contribute to the development of the different phenotypes in mitochondrial disease. 相似文献
24.
Lakshmi Prasad Tajdar Husain Khan Tamanna Jahangir Sarwat Sultana 《Biological trace element research》2006,113(1):77-91
Nickel, a major environmental pollutant, is known for its clastogenic, toxic, and carcinogenic potential. In this article,
we report the effect of Acorus calamus on nickel chloride (NiCl2)-induced renal oxidative stress, toxicity, and cell proliferation response in male Wistar rats. NiCl2 (250 μmol/kg body weight/mL) enhanced reduced renal glutathione content (GSH) glutathione-S-transferase (GST), glutathione reductase (GR), lipid peroxidation (LPO), H2O2 generation, blood urea nitrogen (BUN), and serum creatinine with a concomitant decrease in the activity of glutathione peroxidase
(GPx) (p<0.001). NiCl2 administration also dose-dependently induced the renal ornithine decarboxylase (ODC) activity several-fold as compared to
salinetreated control rats. Similarly, renal DNA synthesis, which is measured in terms of [3H] thymidine incorporation in DNA, was elevated following NiCl2 treatment. Prophylactic treatment of rats with A. calamus (100 and 200 mg/kg body weight po) daily for 1 wk resulted in the diminution of NiCl2-mediated damage, as evident from the downregulation of glutathione content, GST, GR, LPO, H2O2 generation, BUN, serum creatinine, DNA synthesis (p<0.001), and ODC activity (p<0.01) with concomitant restoration of GPx activity. These results clearly demonstrate the role of oxidative stress and its
relation to renal disfunctioning and suggest a protective effect of A. calamus on NiCl2-induced nephrotoxicity in a rat experimental model. 相似文献
25.
A lectin was purified (designated as TCSL) from the Snake guard seeds with molecular mass of 56±2 kDa containing two subunits (34±1 and 22±1 kDa.). TCSL exhibited high agglutination activity at the temperature range 30 to 70°C and did not lose its activity between pH 3.0 to 12.0. The lectin was stable in the presence of denaturants and agglutinated mouse, goat, cow, chicken and human erythrocytes. TCSL did not show antifungal activity whereas it agglutinated six pathogenic bacteria and showed less toxicity against brine shrimp nauplii with the LC50 of 261±29 μg/ml. TCSL showed 28% and 72% inhibition against Ehrlich ascites carcinoma (EAC) cells in vivo in mice when administered 1 mg/kg/day and 2 mg/kg/day (i.p.) respectively for five days. TCSL enhanced the number of macrophages remarkably in the normal mice. The lectin reduced the tumor burden to 62% of EAC cells and significantly increased the hemoglobin and RBC. Treating the EAC bearing mice with TCSL at 2 mg/Kg/day for ten days with a monitoring of 20 days decreased the total WBC towards the normal level and it increased the life span by 39%. 相似文献
26.
Plants face a number of biotic and abiotic environmental stress factors during growth. Among the abiotic factors, in particular, a great deal of attention has been paid to metals not only because of their increasing amounts in the environment due to rapid industrial development but also because of the variation of metal composition in soil. Cultivation of crops close to industrial areas or irrigation with contaminated water may result in both growth inhibition and tissue accumulation of metals. Brassica species are well known as metal accumulators and are being used for phytoremediation of contaminated soils. However, the metal tolerance mechanism in the plant still remains unclear. In order to investigate the metabolomic changes induced by metal ions in Brassica, plants were subjected to concentrations 50, 100, 250 and 500mmol of copper (Cu), iron (Fe) and manganese (Mn) in separate treatments. (1)H NMR and two-dimensional NMR spectra coupled with principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were applied to investigate the metabolic change in Brassica rapa (var. Raapstelen). The (1)H-NMR analysis followed by the application of chemometric methods revealed a number of metabolic consequences. Among the metabolites that showed variation, glucosinolates and hydroxycinnamic acids conjugated with malates were found to be the discriminating metabolites as were primary metabolites like carbohydrates and amino acids. This study shows that the effects of Cu and Fe on plant metabolism were larger than those of Mn and that the metabolomic changes varied not only according to the type of metal but also according to its concentration. 相似文献
27.
28.
Susan Asghari Tazehkand Jahangir Heydarnejad Heshmat Rahimian Hossain Massumi 《Archives Of Phytopathology And Plant Protection》2017,50(15-16):761-775
Phyllody disease is a threat to sesame production in Kerman province, southeastern Iran. RFLP analysis of PCR products of phytoplasma-specific 16S rRNA gene (1.8 kb) and phylogenetic analyses of 16S-23S rDNA spacer region (SR) sequence indicated that the predominant agent associated with sesame phyllody in Kerman province is a phytoplasma with 100% similarity with eggplant big bud, and peanut witches’-broom phytoplasmas, members of “Candidatus Phytoplasma aurantifolia” from Iran and China, respectively. Among the samples tested, only one strain (SPhSr1), had a unique RFLP profile and its SR was 100% similar in nucleotide sequence with the phytoplasma carried by Orosius albicinctus and Helianthus annus witches’-broom phytoplasma from Iran, members of “Ca. Phytoplasma trifolii”. Virtual RFLP patterns of SPhJ2 (representative of the predominant PCR-RFLP profiles) SR sequence were identical to those of peanut witches’-broom phytoplasma (16SrII-A, JX871467). However, SPhSr1 SR sequence patterns resemble (99.7%) those of vinca virescence phytoplasma (16SrVI-A, AY500817). 相似文献
29.
Roghaye Arezumand Reza Mahdian Mahdi Behdani Hossein Khanahmad Jahangir Langari Nabiollah Namvarasl Reza Hassanzadeh-Ghasabeh Sirous Zeinali 《Saudi Journal of Biological Sciences》2014,21(1):35-39
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family. Unlike VEGF, PlGF is dispensable for normal cell development as well as playing various roles in pathological angiogenesis which occurs in tissue ischemia, inflammation, and malignancy. The PlGF-1 has been considered as a potential candidate for the diagnosis and targeting of pathological angiogenesis. Camelidae serum contains an important fraction of functional antibodies, called heavy-chain antibodies (HcAbs) that are naturally devoid of light chains. Camelid HcAbs recognize their cognate antigens by a single variable-domain, referred to as VHH or Nanobody.Here, we describe the expression and purification of recombinant human PlGF-1 (rhPlGF-1). This protein was subsequently used for the preparation of camel heavy chain polyclonal antibody against rhPlGF-1.The recombinant expression plasmid pET-26b-hPlGF-1 was introduced into Escherichia coli BL21 cells to express the rhPlGF-1 protein. Purified rhPlGF-1 was used to immunize camel, the specific reactivity of HcAb was determined with ELISA and western blot. Western blot analysis indicated that the antiserum specifically reacted to the recombinant protein. The rhPlGF-1 protein and its antibody may be used for the development of detection assays needed for clinical research. 相似文献
30.
Salah Uddin Khan Henrik Salje A. Hannan Md. Atiqul Islam A. A. Mamun Bhuyan Md. Ariful Islam M. Ziaur Rahman Nazmun Nahar M. Jahangir Hossain Stephen P. Luby Emily S. Gurley 《PLoS neglected tropical diseases》2014,8(9)