首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2719篇
  免费   141篇
  国内免费   3篇
  2863篇
  2023年   21篇
  2022年   39篇
  2021年   78篇
  2020年   52篇
  2019年   53篇
  2018年   73篇
  2017年   75篇
  2016年   86篇
  2015年   140篇
  2014年   115篇
  2013年   202篇
  2012年   196篇
  2011年   194篇
  2010年   134篇
  2009年   98篇
  2008年   128篇
  2007年   133篇
  2006年   126篇
  2005年   110篇
  2004年   80篇
  2003年   80篇
  2002年   80篇
  2001年   42篇
  2000年   29篇
  1999年   30篇
  1998年   16篇
  1997年   18篇
  1995年   15篇
  1992年   15篇
  1991年   18篇
  1990年   19篇
  1989年   16篇
  1988年   17篇
  1987年   17篇
  1986年   12篇
  1985年   16篇
  1984年   21篇
  1983年   16篇
  1982年   20篇
  1981年   12篇
  1979年   17篇
  1977年   13篇
  1976年   15篇
  1975年   14篇
  1974年   12篇
  1972年   15篇
  1971年   11篇
  1968年   11篇
  1967年   11篇
  1966年   10篇
排序方式: 共有2863条查询结果,搜索用时 15 毫秒
61.
62.
AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2flop receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain.  相似文献   
63.
Over the past decades, there has been growing recognition that light can provide a powerful stimulus for biological interrogation. Light‐actuated tools allow manipulation of molecular events with ultra‐fine spatial and fast temporal resolution, as light can be rapidly delivered and focused with sub‐micrometre precision within cells. While light‐actuated chemicals such as photolabile ‘caged’ compounds have been in existence for decades, the use of genetically encoded natural photoreceptors for optical control of biological processes has recently emerged as a powerful new approach with several advantages over traditional methods. Here, we review recent advances using light to control basic cellular functions and discuss the engineering challenges that lie ahead for improving and expanding the ever‐growing optogenetic toolkit.  相似文献   
64.
65.
Novel 2-thioxothiazole derivatives (619) as potential adenosine A2A receptor (A2AR) antagonists were synthesized. The strong interaction of the compounds (619) with A2AR in docking study was confirmed by high binding affinity with human A2AR expressed in HEK293T cells using radioligand-binding assay. The compound 19 demonstrated very high selectivity for A2AR as compared to standard A2AR antagonist SCH58261. Decrease in A2AR-coupled release of endogenous cAMP in treated HEK293T cells demonstrated in vitro A2AR antagonist potential of the compound 19. Attenuation in haloperidol-induced impairment (catalepsy) in Swiss albino male mice pre-treated with compound 19 is evocative to explore its prospective in therapy of PD.  相似文献   
66.
Inferior vena caval thrombosis is an unusual complication of permanent pacemaker implantation. The clinical presentation due to thrombosis depends on the site of thrombus. We have described here a rare case of pacemaker lead associated thrombosis of inferior vena cava, its diagnostic work up and briefly reviewed the existing literature of this uncommon complication.  相似文献   
67.
A novel amperometric lactate biosensor was developed based on immobilization of lactate dehydrogenase onto graphene oxide nanoparticles‐decorated pencil graphite electrode. The enzyme electrode was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and cyclic voltammetry at different stages of its construction. The biosensor showed optimum response within 5 s at pH 7.3 (0.1 M sodium phosphate buffer) and 35°C, when operated at 0.7 V. The biosensor exhibited excellent sensitivity (detection limit as low as 0.1 μM), fast response time (5 s), and wider linear range (5–50 mM). Analytical recovery of added lactic acid in serum was between 95.81–97.87% and within‐batch and between‐batch coefficients of variation were 5.04 and 5.40%, respectively. There was a good correlation between serum lactate values obtained by standard colorimetric method and the present biosensor (r = 0.99). The biosensor measured lactate levels in sera of apparently healthy subjects and persons suffering from lactate acidosis and other biological materials (milk, curd, yogurt, beer, white wine, and red wine). The enzyme electrode lost 25% of its initial activity after 60 days of its regular uses, when stored dry at 4°C.  相似文献   
68.
69.
70.
Mathematical approaches made for both the charged dislocation model and piezoelectrically induced electron bombardment model of fracto‐mechanoluminescence (FML), the luminescence induced by fracture of solids, in ZnS:Mn phosphor indicate that the piezoelectrically induced electron bombardment model provides a dominating process for the FML of ZnS phosphors. The concentration of 3000 ppm Mn2+ is optimal for ML intensity of ZnS:Mn phosphor. The decay time of ML gives the relaxation time of the piston used to deform the sample and the time tm of maximum of ML is controlled by both the relaxation time of the piston and decay time of charges on the newly created surfaces of crystals. As the product of the velocity of dislocations and pinning time of dislocations gives the mean free path of a moving dislocation. Both factors play an important role in the ML excitation of impurity doped II–VI semiconductors. The linear increase of total ML intensity IT with the impact velocity indicates that the damage increases linearly with impact velocity of the load. Thus, the ML measurement can be used remotely to monitor the real‐time damage in the structures, and therefore, the ML of ZnS:Mn phosphor has also the potential for a structural health monitoring system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号