首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3804篇
  免费   197篇
  国内免费   3篇
  2023年   35篇
  2022年   76篇
  2021年   116篇
  2020年   88篇
  2019年   79篇
  2018年   137篇
  2017年   95篇
  2016年   150篇
  2015年   185篇
  2014年   206篇
  2013年   273篇
  2012年   329篇
  2011年   271篇
  2010年   165篇
  2009年   143篇
  2008年   160篇
  2007年   162篇
  2006年   137篇
  2005年   136篇
  2004年   110篇
  2003年   95篇
  2002年   82篇
  2001年   74篇
  2000年   60篇
  1999年   40篇
  1998年   31篇
  1997年   25篇
  1996年   15篇
  1995年   23篇
  1994年   20篇
  1993年   14篇
  1992年   39篇
  1991年   46篇
  1990年   28篇
  1989年   16篇
  1988年   24篇
  1987年   26篇
  1986年   27篇
  1985年   27篇
  1984年   24篇
  1983年   14篇
  1982年   17篇
  1981年   13篇
  1979年   20篇
  1978年   14篇
  1976年   15篇
  1975年   21篇
  1974年   13篇
  1973年   14篇
  1972年   12篇
排序方式: 共有4004条查询结果,搜索用时 15 毫秒
131.
Many attempts on optimization of sorghum [Sorghum bicolor (L.) Moench] tissue culture induction media have been made, but the culture system remains with some bottlenecks compared to that of other crops. This study aimed at assessing the suitability of various induction media to produce embryogenic callus (yellow and friable) with high induction rates and reduced phenolic exudation. The six culture medium modifications: 3 based on Murashige and Skoog (MS) medium and one each based on Chu N6, Gamborg B5 and 190-2 media respectively were applied in the culture of mature embryos from 10 sorghum genotypes. Although there was a genotype influence on the attainment of a yellow callus, friability of the callus was determined to be dependent on the culture medium and not the genotype. Half strength MS medium with 0.2 mg/l 2,4-D with 2.8 g/l Gelrite® as the gelling agent modified with 1.0 g/l KH2PO4, 1.0 g/l L-proline, 1.0 g/l L-asparagine and 0.16 mg/l CuSO4·5H2O (type E) was found to be the most effective resulting in about 60% yellow coloured callus induction with 25% friability. Addition of CuSO4·5H2O, KH2PO4, L-proline and L-asparagine significantly reduced the phenolic production. Half strength MS medium was observed to contribute to quality callus production when compared to full strength MS media modified with the compounds. The half strength MS medium was also observed to suppress phenolic production. Medium 190-2 produced the highest regeneration frequency (40%) among the 3-regeneration media tested. The results provide information on a suitable sorghum callus induction medium necessary for embryogenesis.  相似文献   
132.
Biological Trace Element Research - Chronic non-healing diabetic foot ulcers (DFU) with a recurrence rate of over 50% in 3 years account for more than 1,08000 non-traumatic lower extremity...  相似文献   
133.
Molecular Biology Reports - Diploid A genome wheat species harbor immense genetic variability which has been targeted and proven useful in wheat improvement. Development and deployment of...  相似文献   
134.
Molecular Biology Reports - Introns experience lesser selection pressure, thus are liable for higher polymorphism. Intron Length Polymorphic (ILP) markers designed from exon-flanking introns...  相似文献   
135.
The Nest is a concave-shaped structural motif in proteins formed by consecutive enantiomeric left-handed (L) and right-handed (R) helical conformation of the backbone. This important motif subsumes many turn and helix capping structures and binds electron-rich ligands. Simple Nests are either RL or LR. Larger Nests (>2 residues long) may be RLR, LRL, RLRL, and so forth, being considered as composed of overlapping simple Nests. The larger Nests remain under-explored despite their widely known contributions to protein function. In our study, we address whether the recurrence of enantiomeric geometry in the larger Nests constrains the peptide backbone such that distinct compositional and conformational preferences are seen compared to simple Nests. Our analysis reveals the critical role of the L helical torsion angle in the formation of larger Nests. This can be observed through the higher propensity of residue or secondary structure combinations in LR and LRL backbone conformation in comparison to RL or RLR, although LR/LRL is considerably lower by occurrence. We also find that the most abundant doublets and triplets in Nests have a propensity for particular secondary structures, suggesting a strong sequence-structure relationship in the larger Nest. Overall, our analysis corroborates distinct features of simple and the larger Nests. Such insights would be helpful towards in-vitro design of peptides and peptidomimetic studies.  相似文献   
136.
Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young''s modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young''s modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate.  相似文献   
137.
Evidence is presented for a pathway of phenylalanine catabolism in the hyperthermophilic archaeon Archaeoglobus fulgidus involving the following enzymes—phenylalanine:2-oxoglutarate aminotransferase, phenyllactate dehydrogenase, radical iron–sulphur 3-phenyllactyl-CoA dehydratase, phenylpropionyl-CoA dehydrogenase, aryl pyruvate ferredoxin oxidoreductase, ADP-forming acetyl-CoA synthetase and family III CoA-transferase. Hitherto amino acid degradation pathways involving radical iron–sulphur dehydratases have been characterised only in mesophilic clostridia and related bacteria. The difference here is that the pathway is not fermentative but coupled to sulphate reduction. Initial experiments also show the utilisation of tryptophan as a growth substrate and the decarboxylation of caffeate by cell extracts, suggesting the potential to catabolise different classes of aromatic compounds.  相似文献   
138.
Over-utilisation and continuous depletion of medicinal plants have affected their supply and loss of genetic diversity. Hence the current study is based on conservation strategies for threatened medicinal plants with special reference to Barleria prionitis L. using in vitro and ex vitro propagation techniques. We have developed here a protocol for plant regeneration of Barleria prionitis L. We have also developed an efficient system of vegetative propagation of Barleria prionitis L. through stem cuttings using revive rooting hormones. These studies can be useful for conservation strategies of this important medicinal plant.  相似文献   
139.
The cystatins form a superfamily of structurally related proteins with highly conserved structural folds. They are all potent, reversible, competitive inhibitors of cysteine proteinases (CPs). Proteins from this group present differences in proteinase inhibition despite their high level of structural similarities. In this study, three cysteine proteinase inhibitors (CPIs) of low molecular weight were isolated from human seminal fluid (HSF) by affinity chromatography on carboxymethyl (CM)-papain–Sepharose column, purified using various chromatographic procedures and checked for purity on sodium-dodecyl PAGE (SDS-PAGE). Matrix-assisted laser desorption-ionization-time-of flight-mass spectrometry (MALDI-TOF-MS) identified these proteins as cystatin 9, cystatin SN, and SAP-1 (an N-terminal truncated form of cystatin S). All three CPIs suppressed the activity of papain potentially and showed remarkable heat stability. Interestingly SAP-1 also inhibits the activity of trypsin, chymotrypsin, pepsin, and PSA (prostate specific antigen) and acts as a cross-class protease inhibitor in in vitro studies. Using Surface Plasmon Resonance, we have also observed that SAP-1 shows a significant binding with all these proteases. These studies suggest that SAP-1 is a cross-class inhibitor that may regulate activity of various classes of proteases within the reproductive systems. To our knowledge, this is the first report about purification of CPIs from HSF; the identification of such proteins could provide better insights into the physiological processes and offer intimation for further research.  相似文献   
140.
ABSTRACT:?

The demand for natural and nonpersistent insecticides is increasing day by day. Plant cell cultures could be an alternative to conventional methods of production of insecticides from field-grown plants. In vitro cultured plant cells produce a wide array of insecticides as a part of their secondary metabolism. Their ability to synthesize key enzymes and the manipulation of these could lead to the enhanced production of many insecticides of industrial importance. The development of a high-yielding hairy root culture system for thiophenes, nicotine, and phytoecdysones is of considerable interest. In this article, the current literature on various factors that influence the growth, production, and secretion of six insecticidal compounds, namely, pyrethrins, azadirachtin, thiophenes, nicotine, rotenoids, and phytoecdysones which have been prospects for the scale-up of cell cultures, genetic engineering to obtain transgenic plants, and metabolically engineered plants for increased production of bio-molecules, has been discussed. Environmental safety clearance and the future prospects of application of bio-molecules for plant-derived insecticides are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号