首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   16篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   8篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   15篇
  2013年   18篇
  2012年   20篇
  2011年   15篇
  2010年   8篇
  2009年   6篇
  2008年   7篇
  2007年   15篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   11篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1997年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1973年   1篇
排序方式: 共有202条查询结果,搜索用时 250 毫秒
71.
72.
The formation of nitrogen‐fixing nodules on legume hosts is a finely tuned process involving many components of both symbiotic partners. Production of the exopolysaccharide succinoglycan by the nitrogen‐fixing bacterium Sinorhizobium meliloti 1021 is needed for an effective symbiosis with Medicago spp., and the succinyl modification to this polysaccharide is critical. However, it is not known when succinoglycan intervenes in the symbiotic process, and it is not known whether the plant lysin‐motif receptor‐like kinase MtLYK10 intervenes in recognition of succinoglycan, as might be inferred from work on the Lotus japonicus MtLYK10 ortholog, LjEPR3. We studied the symbiotic infection phenotypes of S. meliloti mutants deficient in succinoglycan production or producing modified succinoglycan, in wild‐type Medicago truncatula plants and in Mtlyk10 mutant plants. On wild‐type plants, S. meliloti strains producing no succinoglycan or only unsuccinylated succinoglycan still induced nodule primordia and epidermal infections, but further progression of the symbiotic process was blocked. These S. meliloti mutants induced a more severe infection phenotype on Mtlyk10 mutant plants. Nodulation by succinoglycan‐defective strains was achieved by in trans rescue with a Nod factor‐deficient S. meliloti mutant. While the Nod factor‐deficient strain was always more abundant inside nodules, the succinoglycan‐deficient strain was more efficient than the strain producing only unsuccinylated succinoglycan. Together, these data show that succinylated succinoglycan is essential for infection thread formation in M. truncatula, and that MtLYK10 plays an important, but different role in this symbiotic process. These data also suggest that succinoglycan is more important than Nod factors for bacterial survival inside nodules.  相似文献   
73.
Plants being sessile integrate information from a variety of endogenous and external cues simultaneously to optimize growth and development. This necessitates the signaling networks in plants to be highly dynamic and flexible. One such network involves heterotrimeric G‐proteins comprised of Gα, Gβ, and Gγ subunits, which influence many aspects of growth, development, and stress response pathways. In plants such as Arabidopsis, a relatively simple repertoire of G‐proteins comprised of one canonical and three extra‐large Gα, one Gβ and three Gγ subunits exists. Because the Gβ and Gγ proteins form obligate dimers, the phenotypes of plants lacking the sole or all genes are similar, as expected. However, Gα proteins can exist either as monomers or in a complex with Gβγ, and the details of combinatorial genetic and physiological interactions of different Gα proteins with the sole Gβ remain unexplored. To evaluate such flexible, signal‐dependent interactions and their contribution toward eliciting a specific response, we have generated Arabidopsis mutants lacking specific combinations of and genes, performed extensive phenotypic analysis, and evaluated the results in the context of subunit usage and interaction specificity. Our data show that multiple mechanistic modes, and in some cases complex epistatic relationships, exist depending on the signal‐dependent interactions between the Gα and Gβ proteins. This suggests that, despite their limited numbers, the inherent flexibility of plant G‐protein networks provides for the adaptability needed to survive under continuously changing environments.  相似文献   
74.
Helicobacter pylori mediated gastric ulcer and cancers are common global problems since it was found to colonize in ∼50% of gastric ulcer/cancer patients. Decalepis hamiltonii, (Asclepiadaceae family) extracts have been depicted with medicinal properties supporting the traditional knowledge of health beneficial attributes of D. hamiltonii. Previously we have shown that both aqueous as well as methanol extracts of D. hamiltonii containing abundant phenolics with predominant levels (20-40% of total phenolics) of 2-hydroxy-4-methoxy benzaldehyde (HMBA). Despite higher levels, HMBA contributed very little to the antioxidant activity (<10%) when compared to other phenolic compounds in the extract. In the current study we attempted to explore antimicrobial property, particularly anti-H. pylori activity, since traditional users document D. hamiltonii as a fighter of microbial infections. HMBA was isolated from the roots of D. hamiltonii by hydrodistillation and cold crystallization method; identified by HPLC and characterized using ESI-MS and confirmed by NMR studies as a compound of molecular mass 152 Da. Isolated HMBA was found to inhibit the growth of H. pylori, a potential ulcerogen in a dose dependent manner with MIC of ∼39 μg/mL as apposed to that of amoxicillin (MIC - 26 μg/mL) for which H. pylori is susceptible. Results were further substantiated by the lysis of H. pylori by electron microscopy and electrophoretic studies. Studies on the mechanism of action indicated the counteracting effect of vacuolating toxin (VacA) of H. pylori which otherwise would lead to host cell cytotoxicity. Further the increased binding ability of HMBA to DNA and protein offered an impact on DNA protectivity and bioavailability. Results for the first time provide a direct evidence for anti-microbial attribute of HMBA. Insignificant antioxidant attribute of HMBA also reveals the anti-H. pylori activity via mechanisms other than antioxidative routes.  相似文献   
75.
Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vector.  相似文献   
76.
77.
The enzyme UDP-galactose-4-epimerase (GAL10) catalyzes a key step in galactose metabolism converting UDP-galactose to UDP-glucose which then can get metabolized through glycolysis and TCA cycle thus allowing the cell to use galactose as a carbon and energy source. As in many fungi, a functional homolog of GAL10 exists in Candida albicans. The domainal organization of the homologs from Saccharomyces cerevisiae and C. albicans show high degree of homology having both mutarotase and an epimerase domain. The former is responsible for the conversion of beta-d-galactose to alpha-d-galactose and the latter for epimerization of UDP-galactose to UDP-glucose. Absence of C. albicans GAL10 (CaGAL10) affects cell-wall organization, oxidative stress response, biofilm formation and filamentation. Cagal10 mutant cells tend to flocculate extensively as compared to the wild-type cells. The excessive filamentation in this mutant is reflected in its irregular and wrinkled colony morphology. Cagal10 strain is more susceptible to oxidative stress when tested in presence of H2O2. While the S. cerevisiae GAL10 (ScGAL10), essential for survival in the presence of galactose, has not been reported to have defects in the absence of galactose, the C. albicans homolog shows these phenotypes during growth in the absence of galactose. Thus a functional CaGal10 is required not only for galactose metabolism but also for normal hyphal morphogenesis, colony morphology, maintenance of cell-wall integrity and for resistance to oxidative stress even in the absence of galactose.  相似文献   
78.
Most plant species form symbioses with arbuscular mycorrhizal (AM) fungi, which facilitate the uptake of mineral nutrients such as phosphate from the soil. Several transporters, particularly proton-coupled phosphate transporters, have been identified on both the plant and fungal membranes and contribute to delivering phosphate from fungi to plants. The mechanism of nutrient exchange has been studied in plants during mycorrhizal colonization, but the source of the electrochemical proton gradient that drives nutrient exchange is not known. Here, we show that plasma membrane H+-ATPases that are specifically induced in arbuscule-containing cells are required for enhanced proton pumping activity in membrane vesicles from AM-colonized roots of rice (Oryza sativa) and Medicago truncatula. Mutation of the H+-ATPases reduced arbuscule size and impaired nutrient uptake by the host plant through the mycorrhizal symbiosis. Overexpression of the H+-ATPase Os-HA1 increased both phosphate uptake and the plasma membrane potential, suggesting that this H+-ATPase plays a key role in energizing the periarbuscular membrane, thereby facilitating nutrient exchange in arbusculated plant cells.  相似文献   
79.
80.

Background

Sorghum [Sorghum bicolor (L.) Moench] is an important dry-land cereal of the world providing food, fodder, feed and fuel. Stay-green (delayed-leaf senescence) is a key attribute in sorghum determining its adaptation to terminal drought stress. The objective of this study was to validate sorghum stay-green quantitative trait loci (QTL) identified in the past, and to identify new QTL in the genetic background of a post-rainy adapted genotype M35-1.

Results

A genetic linkage map based on 245 F9 Recombinant Inbred Lines (RILs) derived from a cross between M35-1 (more senescent) and B35 (less senescent) with 237 markers consisting of 174 genomic, 60 genic and 3 morphological markers was used. The phenotypic data collected for three consecutive post-rainy crop seasons on the RIL population (M35-1 × B35) was used for QTL analysis. Sixty-one QTL were identified for various measures of stay-green trait and each trait was controlled by one to ten QTL. The phenotypic variation explained by each QTL ranged from 3.8 to 18.7%. Co-localization of QTL for more than five traits was observed on two linkage groups i.e. on SBI-09-3 flanked by S18 and Xgap206 markers and, on SBI-03 flanked by XnhsbSFCILP67 and Xtxp31. QTL identified in this study were stable across environments and corresponded to sorghum stay-green and grain yield QTL reported previously. Of the 60 genic SSRs mapped, 14 were closely linked with QTL for ten traits. A genic marker, XnhsbSFCILP67 (Sb03g028240) encoding Indole-3-acetic acid-amido synthetase GH3.5, was co-located with QTL for GLB, GLM, PGLM and GLAM on SBI-03. Genes underlying key enzymes of chlorophyll metabolism were also found in the stay-green QTL regions.

Conclusions

We validated important stay-green QTL reported in the past in sorghum and detected new QTL influencing the stay-green related traits consistently. Stg2, Stg3 and StgB were prominent in their expression. Collectively, the QTL/markers identified are likely candidates for subsequent verification for their involvement in stay-green phenotype using NILs and to develop drought tolerant sorghum varieties through marker-assisted breeding for terminal drought tolerance in sorghum.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-909) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号