首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   24篇
  国内免费   2篇
  278篇
  2023年   2篇
  2022年   11篇
  2021年   15篇
  2020年   21篇
  2019年   18篇
  2018年   14篇
  2017年   10篇
  2016年   19篇
  2015年   25篇
  2014年   21篇
  2013年   26篇
  2012年   15篇
  2011年   24篇
  2010年   3篇
  2009年   7篇
  2008年   12篇
  2007年   10篇
  2006年   11篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1985年   1篇
  1979年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
11.
Human-induced pluripotent stem cells-derived hepatocyte-like cells (hiPSCs-HLCs) holds considerable promise for future clinical personalized therapy of liver disease. However, the low engraftment of these cells in the damaged liver microenvironment is still an obstacle for potential application. In this study, we explored the effectiveness of decellularized amniotic membrane (dAM) matrices for culturing of iPSCs and promoting their differentiation into HLCs. The DNA content assay and histological evaluation indicated that cellular and nuclear residues were efficiently eliminated and the AM extracellular matrix component was maintained during decelluarization. DAM matrices were developed as three-dimensional scaffolds and hiPSCs were seeded into these scaffolds in defined induction media. In dAM scaffolds, hiPSCs-HLCs gradually took a typical shape of hepatocytes (polygonal morphology). HiPSCs-HLCs that were cultured into dAM scaffolds showed a higher level of hepatic markers than those cultured in tissue culture plates (TCPs). Moreover, functional activities in term of albumin and urea synthesis and CYP3A activity were significantly higher in dAM scaffolds than TCPs over the same differentiation period. Thus, based on our results, dAM scaffold might have a considerable potential in liver tissue engineering, because it can improve hepatic differentiation of hiPSCs which exhibited higher level of the hepatic marker and more stable metabolic functions.  相似文献   
12.

Glioblastoma multiform (GBM) is known as an aggressive glial neoplasm. Recently incorporation of mesenchymal stem cells with anti-tumor drugs have been used due to lack of immunological responses and their easy accessibility. In this study, we have investigated the anti-proliferative and apoptotic activity of atorvastatin (Ator) in combination of mesenchymal stem cells (MSCs) on GBM cells in vitro and in vivo. The MSCs isolated from rats and characterized for their multi-potency features. The anti-proliferative and migration inhibition of Ator and MSCs were evaluated by MTT and scratch migration assays. The annexin/PI percentage and cell cycle arrest of treated C6 cells were evaluated until 72 h incubation. The animal model was established via injection of C6 cells in the brain of rats and subsequent injection of Ator each 3 days and single injection of MSCs until 12 days. The growth rate, migrational phenotype and cell cycle progression of C6 cells decreased and inhibited by the interplay of different factors in the presence of Ator and MSCs. The effect of Ator and MSCs on animal models displayed a significant reduction in tumor size and weight. Furthermore, histopathology evaluation proved low hypercellularity and mitosis index as well as mild invasive tumor cells for perivascular cuffing without pseudopalisading necrosis and small delicate vessels in Ator?+?MSCs condition. In summary, Ator and MSCs delivery to GBM model provides an effective strategy for targeted therapy of brain tumor.

  相似文献   
13.
The extracellular matrix of different mammalian tissues is commonly used as scaffolds in the field of tissue engineering. One of these tissues, which has frequently been studied due to its structural and biological features, is the small intestine submucosal membrane. These research are mainly done on the porcine small intestine. However, a report has recently been published about a scaffold produced from the submucosal layer of the ovine small intestine. In the present study, ovine small intestine submucosal (OSIS) was decellularized in a modified manner and its histological, morphological, and biomechanical properties were studied. Decellularization was performed in two phases: physical and chemical. In this method, a chloroform-methanol mixture, enzymatic digestion, and a constant dose of sodium dodecyl sulfate (SDS) was used in the least agitation time and its histological property and biocompatibility were evaluated in the presence of adipose tissue-derived stem cells (ADSCs); furthermore, ADSCs were isolated with a simple method (modified physical washing non-enzymatic isolation). The results were showed that the use of OSIS could be effective and operative. Mechanical properties, histological structure and shape, and glycosaminoglycan content were preserved. In the SDS-treated group, more than 90% of the native cells of tissue were deleted, and also in this group, no toxicity was observed and cell proliferation was supported, compared to the untreated group. Therefore, our results indicate that ADSCs seeded on OSIS scaffold could be used as a new approach in regenerative medicine as hybrid or hydrogel application.  相似文献   
14.
15.
16.
17.
Acute renal failure (ARF) is a clinical challenge that is highly resistant to treatment, and its high rate of mortality is alarming. Ischemia–reperfusion injury (IRI) is the most common cause of ARF. Especially IRI is implicated in kidney transplantation and can determine graft survival. Although the exact pathophysiology of renal IRI is unknown, the role of inflammatory responses has been elucidated. Because mesenchymal stromal cells (MSCs) have strong immunomodulatory properties, they are under extensive investigation as a therapeutic modality for renal IRI. Extracellular vesicles (EVs) play an integral role in cell-to-cell communication. Because the regenerative potential of the MSCs can be recapitulated by their EVs, the therapeutic appeal of MSC-derived EVs has dramatically increased in the past decade. Higher safety profile and ease of preservation without losing function are other advantages of EVs compared with their producing cells. In the current review, the preliminary results and potential of MSC-derived EVs to alleviate kidney IRI are summarized. We might be heading toward a cell-free approach to treat renal IRI.  相似文献   
18.
Plant Cell, Tissue and Organ Culture (PCTOC) - Ziziphora persica (Lamiaceae) has been used as infusions and decoctions in traditional medicine for various purposes such as sedative, carminative,...  相似文献   
19.
Mimicking compositional and constructional features of the extracellular matrix(ECM)is an effective parameter in improving the biological response of biomateria...  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号