首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22364篇
  免费   1983篇
  国内免费   2310篇
  26657篇
  2024年   41篇
  2023年   209篇
  2022年   447篇
  2021年   709篇
  2020年   599篇
  2019年   691篇
  2018年   690篇
  2017年   582篇
  2016年   789篇
  2015年   1272篇
  2014年   1462篇
  2013年   1614篇
  2012年   2047篇
  2011年   1768篇
  2010年   1258篇
  2009年   1157篇
  2008年   1438篇
  2007年   1305篇
  2006年   1233篇
  2005年   1132篇
  2004年   1042篇
  2003年   951篇
  2002年   796篇
  2001年   555篇
  2000年   463篇
  1999年   427篇
  1998年   278篇
  1997年   212篇
  1996年   194篇
  1995年   171篇
  1994年   149篇
  1993年   110篇
  1992年   138篇
  1991年   109篇
  1990年   91篇
  1989年   89篇
  1988年   59篇
  1987年   70篇
  1986年   53篇
  1985年   28篇
  1984年   18篇
  1983年   35篇
  1982年   16篇
  1981年   17篇
  1979年   17篇
  1978年   14篇
  1977年   13篇
  1975年   10篇
  1972年   12篇
  1970年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Choi G  Ha NC  Kim MS  Hong BH  Oh BH  Choi KY 《Biochemistry》2001,40(23):6828-6835
Delta5-3-ketosteroid isomerase (KSI) from Pseudomonas putida Biotype B catalyzes the allylic isomerization of Delta5-3-ketosteroids to their conjugated Delta4-isomers via a dienolate intermediate. Two electrophilic catalysts, Tyr-14 and Asp-99, are involved in a hydrogen bond network that comprises Asp-99 Odelta2...O of Wat504...Tyr-14 Oeta...Tyr-55 Oeta.Tyr-30 Oeta in the active site of P. putida KSI. Even though neither Tyr-30 nor Tyr-55 plays an essential role in catalysis by the KSI, the catalytic activity of Y14F could be increased ca. 26-51-fold by the additional Y30F and/or Y55F mutation in the hydrogen bond network. To identify the structural basis for the pseudoreversion in the KSI, crystal structures of Y14F and Y14F/Y30F/Y55F have been determined at 1.8 and 2.0 A resolution, respectively. Comparisons of the two structures near the catalytic center indicate that the hydrogen bond between Asp-99 Odelta2 and C3-O of the steroid, which is perturbed by the Y14F mutation, can be partially restored to that in the wild-type enzyme by the additional Y30F/Y55F mutations. The kinetic parameters of the tyrosine mutants with the additional D99N or D99L mutation also support the idea that Asp-99 contributes to catalysis more efficiently in Y14F/Y30F/Y55F than in Y14F. In contrast to the catalytic mechanism of Y14F, the C4 proton of the steroid substrate was found to be transferred to the C6 position in Y14F/Y30F/Y55F with little exchange of the substrate 4beta-proton with a solvent deuterium based on the reaction rate in D2O. Taken together, our findings strongly suggest that the improvement in the catalytic activity of Y14F by the additional Y30F/Y55F mutations is due to the changes in the structural integrity at the catalytic site and the resulting restoration of the proton-transfer mechanism in Y14F/Y30F/Y55F.  相似文献   
992.
The yeast SNARE Ykt6p has been implicated in several trafficking steps, including vesicular transport from the endoplasmic reticulum (ER) to the Golgi, intra-Golgi transport, and homotypic vacuole fusion. The functional role of its mammalian homologue (Ykt6) has not been established. Using antibodies specific for mammalian Ykt6, it is revealed that it is found mainly in Golgi-enriched membranes. Three SNAREs, syntaxin 5, GS28, and Bet1, are specifically associated with Ykt6 as revealed by co-immunoprecipitation, suggesting that these four SNAREs form a SNARE complex. Double labeling of Ykt6 and the Golgi marker mannosidase II or the ER-Golgi recycling marker KDEL receptor suggests that Ykt6 is primarily associated with the Golgi apparatus. Unlike the KDEL receptor, Ykt6 does not cycle back to the peripheral ER exit sites. Antibodies against Ykt6 inhibit in vitro ER-Golgi transport of vesicular stomatitis virus envelope glycoprotein (VSVG) only when they are added before the EGTA-sensitive stage. ER-Golgi transport of VSVG in vitro is also inhibited by recombinant Ykt6. In the presence of antibodies against Ykt6, VSVG accumulates in peri-Golgi vesicular structures and is prevented from entering the mannosidase II compartment, suggesting that Ykt6 functions at a late stage in ER-Golgi transport. Golgi apparatus marked by mannosidase II is fragmented into vesicular structures in cells microinjected with Ykt6 antibodies. It is concluded that Ykt6 functions in a late step of ER-Golgi transport, and this role may be important for the integrity of the Golgi complex.  相似文献   
993.
994.
995.
Microglia, the resident immune cells in the brain, play a pivotal role in immune surveillance, host defense, and tissue repair in the CNS. In response to immunological challenges, microglia readily become activated as characterized by morphological changes, expression of surface antigens, and production of immune modulators that impact on neurons to induce neurodegeneration. However, little is known concerning the fate of activated microglia. In the present study, stimulation of cultured rat primary microglia with 1 ng/mL of the inflammagen lipopolysaccharide (LPS) resulted in a maximal activation as measured by the release of tumor necrosis factor alpha (TNF alpha). However, treatment with higher concentrations of LPS resulted in significantly lower quantities of detectable TNF alpha. Further analysis revealed that overactivation of microglia with higher concentrations of LPS (> 1 ng/mL) resulted in a time- and dose-dependent apoptotic death of microglia as defined by DNA strand breaks, surface expression of apoptosis-specific markers (phosphatidylserine), and activation of caspase-3. In contrast, astrocytes were insensitive to LPS-induced cytotoxicity. In light of the importance of microglia and the limited replenishment mechanism, depletion of microglia from the brain may severely hamper its capacity for combating inflammatory challenges and tissue repair. Furthermore, overactivation-induced apoptosis of microglia may be a fundamental self-regulatory mechanism devised to limit bystander killing of vulnerable neurons.  相似文献   
996.
A chromosomal DNA sequence harboring a processed AK2B pseudogene was isolated from a human genomic library. It was a variant of the AK2B gene sequence including several point mutations, deletions, and insertions. The nucleotide sequence of the ORF of the AK2B pseudogene predicted a truncated form of the AK2B mutant suggesting that the processed pseudogene is nonfunctional. A repetitive sequence, AAAAGAGAG, found in the 5' and 3' flanking regions of the pseudogene and the poly(A) tract in the 3' end junction suggest that a mRNA of AK2B may have been converted to the processed pseudogene by retrotransposition events. Previously, it was suggested that an adenylate kinase (AK) 2 related gene on chromosome 2, confirmed by Southern analysis using somatic cell hybrid cell lines, may be a processed pseudogene. It is proposed that the processed pseudogene isolated in this study may be the AK2 related nonfunctional gene localized on human chromosomes 2.  相似文献   
997.
998.
The transesterification of divinyladipate with adenosine in DMF containing 20% (v/v) DMSO was catalyzed by Streptomyces sp. alkaline protease and esterification occurred exclusively at the 3-position of hydroxyl group of ribofuranose in adenosine to give 3-O-vinyladipoyl adenosine without other products.  相似文献   
999.
We examined the effects of epidermal growth factor (EGF) on MDA-MB-468 cells to understand its mechanism of action in an EGF receptor-rich breast cancer cell line. EGF inhibited the growth of MDA-MB-468 cells with an IC50 of 1.5 +/- 0.5 nM, as determined by measurements of DNA content of cells in culture over a period of 4 to 6 days. This growth inhibition included apoptosis 24 h after EGF addition, as detected by an enzyme-linked immunosorbent assay (ELISA) and Hoechst 33342 staining. In EGF-treated cells, peak activities of two key enzymes of polyamine biosynthesis, ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC), were reduced by 57% and 83%, respectively. EGF treatment also caused a 30 to 50% decrease in cellular putrescine at all time points tested (12 to 48 h). EGF-induced inhibition of DNA synthesis was also partially reversed by the addition of putrescine or spermidine, but not by spermine. Western blot analysis of cell cycle regulatory proteins showed that EGF-mediated growth inhibition was associated with the induction of p21, an inhibitor of cyclin-dependent kinases. However, EGF had no significant effect on the expression of cyclin D1 or cyclin E. Furthermore, putrescine reversal of EGF effects was associated with the down-regulation of EGF-induced p21. These results suggest that the mechanism of growth inhibition by EGF in MDA-MB-468 cells include a down-regulation of polyamine biosynthesis and the induction of p21. Identification of growth regulatory pathways in breast cancer cells might be useful in the development of novel targets for therapeutic intervention.  相似文献   
1000.
The binding of the B subunits of Escherichia coli heat-labile enterotoxin (LT) to epithelial cells lining the intestines is a critical step for the toxin to invade the host. This mechanism suggests that molecules which possess high affinity to the receptor binding site of the toxin would be good leads for the development of therapeutics against LT. The natural receptor for LT is the complex ganglioside GM1, which has galactose as its terminal sugar. A chemical library targeting a novel hydrophobic pocket in the receptor binding site of LT was constructed based on galactose derivatives and screened for high affinity to the receptor binding site of LT. This screening identified compounds that have 2-3 orders of magnitude higher affinity toward the receptor binding site of LT than the parent compound, galactose. The present findings will pave the way for developing simple and easily synthesizable molecules, instead of complex oligosaccharides, as drugs and/or prophylactics against LT-caused disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号