首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2806篇
  免费   176篇
  国内免费   2篇
  2024年   3篇
  2023年   7篇
  2022年   34篇
  2021年   69篇
  2020年   26篇
  2019年   42篇
  2018年   63篇
  2017年   44篇
  2016年   87篇
  2015年   153篇
  2014年   179篇
  2013年   203篇
  2012年   276篇
  2011年   235篇
  2010年   175篇
  2009年   156篇
  2008年   199篇
  2007年   170篇
  2006年   164篇
  2005年   131篇
  2004年   123篇
  2003年   115篇
  2002年   68篇
  2001年   61篇
  2000年   58篇
  1999年   40篇
  1998年   11篇
  1997年   19篇
  1996年   14篇
  1995年   6篇
  1994年   4篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   4篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有2984条查询结果,搜索用时 15 毫秒
991.
A novel, red-pigmented, pleomorphic and short rod-shaped haloarchaeon, designated B8T, was isolated from a salt-fermented seafood. Strain B8T was found to be able to grow at 20–45 °C, in the presence of 15–30 % (w/v) NaCl and at pH 7.0–9.0. The optimum requirements were found to be a temperature range of 35–40 °C, pH 8.0 and the presence of 25 % NaCl. The cells of strain B8T were observed to be Gram-staining negative and lysed in distilled water. Anaerobic growth did not occur in the presence of nitrate, l-arginine, dimethyl sulfoxide or trimethylamine N-oxide. The catalase and oxidase activities were found to be positive and nitrate was reduced in aerobic conditions. Tween 20, 40 and 80 were found to be hydrolyzed, whereas casein, gelatin and starch were not hydrolyzed. Indole or H2S was not formed and urease activity was not detected. A phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain B8T is most closely related to members of the genus Halorubrum in the family Halobacteriaceae. Strain B8T was found to have three 16S rRNA genes, rrnA, rrnB and rrnC; similarities between the 16S rRNA gene sequences are 99.0–99.8 %. Strain B8T shared 99.0 % 16S rRNA gene sequence similarity with Halorubrum (Hrr.) lipolyticum JCM 13559T and Hrr. saccharovorum DSM 1137T, 98.8 % with Hrr. kocurii JCM 14978T, 98.3 % with Hrr. lacusprofundi DSM 5036T, 98.0 % with Hrr. arcis JCM 13916T, 97.7 % with Hrr. aidingense JCM 13560T and 97.0 % with Hrr. aquaticum JCM 14031T, as well as 93.7–96.5 % with other type strains in the genus Halorubrum. The RNA polymerase subunit B′ gene sequence similarity of strain B8T with Hrr. kocurii JCM 14978T is 97.2 % and lower with other members of the genus Halorubrum. DNA–DNA hybridization experiments showed that strain B8T shared equal or lower than 50 % relatedness with reference species in the genus Halorubrum. The genomic DNA G+C content of strain B8T was determined to be 64.6 mol%. The major isoprenoid quinone of strain B8T was identified as menaquinone-8 and the major polar lipids as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl glucosyl diether and an unidentified phospholipid. Based on this polyphasic taxonomic study, strain B8T is considered to represent a new species in the genus Halorubrum, for which the name Hrr. halophilum sp. nov. is proposed. The type strain is B8T (=JCM 18963T = CECT 8278T).  相似文献   
992.
Phosphorylation of Thr116 and Thr226 on Orc2, one of the six subunits of the origin recognition complex (ORC), by cyclin A/CDK2 during S phase leads to the dissociation of Orc2, Orc3, Orc4, and Orc5 subunits (Orc2-5) from human chromatin and replication origins. The phosphorylated Orc2 becomes dephosphorylated in the late M phase of the cell cycle. Here we show that protein phosphatase 1 (PP1) dephosphorylates Orc2. Dephosphorylation of Orc2 was accompanied by associating the dissociated Orc subunits with chromatin. Inhibitors of PP1 preferentially inhibited the dephosphorylation of Orc2. The overexpression of the α, β and γ PP1 isoforms decreased the amount of phosphorylated Orc2, and the depletion of these isoforms by RNA interference increased the amount of phosphorylated Orc2. These results suggest that PP1 dephosphorylates Orc2 to promote the binding of ORC to chromatin.  相似文献   
993.
Testosterone is an endocrine hormone with functions in reproductive organs, anabolic events, and skin homeostasis. We report here that GPRC6A serves as a sensor and mediator of the rapid action of testosterone in epidermal keratinocytes. The silencing of GPRC6A inhibited testosterone-induced intracellular calcium ([Ca2+]i) mobilization and H2O2 generation. These results indicated that a testosterone-GPRC6A complex is required for activation of Gq protein, IP3 generation, and [Ca2+]i mobilization, leading to Duox1 activation. H2O2 generation by testosterone stimulated the apoptosis of keratinocytes through the activation of caspase-3. The application of testosterone into three-dimensional skin equivalents increased the apoptosis of keratinocytes between the granular and stratified corneum layers. These results support an understanding of the molecular mechanism of testosterone-dependent apoptosis in which testosterone stimulates H2O2 generation through the activation of Duox1.  相似文献   
994.
Although many peptides have therapeutic effects against diverse disease, their short half-lives in vivo hurdle their application as drug candidates. To extend the short elimination half-lives of therapeutic peptides, we developed a novel delivery platform for therapeutic peptides using an anti-hapten antibody and its corresponding hapten. We selected cotinine because it is non-toxic, has a well-studied metabolism, and is physiologically absent. We conjugated WKYMVm-NH2, an anti-sepsis therapeutic peptide, to cotinine and showed that the conjugated peptide in complex with an anti-cotinine antibody has a significantly improved in vivo half-life while retaining its therapeutic efficacy. We suggest that this novel delivery platform for therapeutic peptides will be very useful to develop effective peptide therapeutics.  相似文献   
995.
Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.  相似文献   
996.
997.
Polyunsaturated fatty acids (PUFAs) have important pharmacological effects on mammalian cells. Here, we show that carboxyl group-containing PUFAs inhibit lysophosphatidic acid (LPA)-induced focal adhesion formation, thereby inhibiting migration and adhesion. Carboxyl group-containing PUFAs inhibit LPA-induced calcium mobilization, whereas ethyl ester-group containing PUFAs have no effect. In addition, carboxyl group-containing PUFAs functionally inhibit LPA-dependent RhoA activation. Given these results, we suggest that PUFAs may inhibit LPA-induced calcium/RhoA signaling pathways leading to focal adhesion formation. Carboxyl group-containing PUFAs may have a functional role in this regulatory mechanism.  相似文献   
998.
999.
Phosphoglucomutase (PGM)1 catalyzes the reversible conversion reaction between glucose-1-phosphate (G-1-P) and glucose-6-phosphate (G-6-P). Although both G-1-P and G-6-P are important intermediates for glucose and glycogen metabolism, the biological roles and regulatory mechanisms of PGM1 are largely unknown. In this study we found that T553 is obligatory for PGM1 stability and the last C-terminal residue, T562, is critical for its activity. Interestingly, depletion of PGM1 was associated with declined cellular glycogen content and decreased rates of glycogenolysis and glycogenesis. Furthermore, PGM1 depletion suppressed cell proliferation under long-term repetitive glucose depletion. Our results suggest that PGM1 is required for sustained cell growth during nutritional changes, probably through regulating the balance of G-1-P and G-6-P in order to satisfy the cellular demands during nutritional stress.  相似文献   
1000.
Binge drinking is a common form of alcohol abuse that involves repeated rounds of intoxication followed by withdrawal. The episodic effects of binge drinking and withdrawal on brain resident cells are thought to contribute to neural remodeling and neurological damage. However, the molecular mechanisms for these neurodegenerative effects are not understood. Ethanol (EtOH) regulates the metabolism of ceramide, a highly bioactive lipid that is enriched in brain. We used a mouse model of binge drinking to determine the effects of EtOH intoxication and withdrawal on brain ceramide metabolism. Intoxication and acute alcohol withdrawal were each associated with distinct changes in ceramide regulatory genes and metabolic products. EtOH intoxication was accompanied by decreased concentrations of multiple ceramides, coincident with reductions in the expression of enzymes involved in the production of ceramides, and increased expression of ceramide‐degrading enzymes. EtOH withdrawal was associated with specific increases in ceramide C16:0, C18:0, and C20:0 and increased expression of enzymes involved with ceramide production. These data suggest that EtOH intoxication may evoke a ceramide phenotype that is neuroprotective, whereas EtOH withdrawal results in a metabolic shift that increases the production of potentially toxic ceramide species.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号