首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2746篇
  免费   169篇
  国内免费   2篇
  2917篇
  2024年   3篇
  2023年   8篇
  2022年   40篇
  2021年   62篇
  2020年   23篇
  2019年   42篇
  2018年   58篇
  2017年   41篇
  2016年   85篇
  2015年   149篇
  2014年   174篇
  2013年   195篇
  2012年   266篇
  2011年   229篇
  2010年   173篇
  2009年   155篇
  2008年   199篇
  2007年   167篇
  2006年   160篇
  2005年   125篇
  2004年   123篇
  2003年   114篇
  2002年   65篇
  2001年   61篇
  2000年   58篇
  1999年   40篇
  1998年   11篇
  1997年   19篇
  1996年   14篇
  1995年   6篇
  1994年   3篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   4篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有2917条查询结果,搜索用时 0 毫秒
11.
The activity of p34cdc2 kinase is regulated in the phases of vertebrate cell cycle by mechanisms of phosphorylation and dephosphorylation. In this paper, we demonstrate that casein kinase II (CKII) phosphorylates p34cdc2 in vivo and in vitro at Ser39 during the G1 phase of HeLa cell division cycle. Human p34cdc2 shows a typical phosphorylation sequence motif site for CKII at Ser39 (ES39EEE). In our experiments, either p34cdc2 expressed and purified from bacteria or p34cdc2 immunoprecipitated from HeLa cells enriched in G1 by elutriation were substrates for in vitro phosphorylation by CKII. Phosphoamino acid analysis, N-chlorosuccinimide mapping, and two-dimensional tryptic mapping of p34cdc2 phosphorylated in vitro were performed to determine the phosphorylation site. A synthetic peptide spanning residues 33-50 of human p34cdc2, including the CKII site, was used to map the site. In addition, phosphorylation at Ser39 also occurs in vivo, since p34cdc2 is phosphorylated during G1 on serine, and its two-dimensional tryptic map shows two phosphopeptides that comigrate exactly with the synthetic peptides used as standard.  相似文献   
12.
Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs.  相似文献   
13.
Lee K  Bae D  Lim D 《Molecules and cells》2002,13(2):175-184
Protein identification by peptide mass fingerprinting, using the matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), plays a major role in large proteome projects. In order to develop a simple and reliable method for protein identification by MALDI-TOF MS, we compared and evaluated the major steps in peptide mass fingerprinting. We found that the removal of excess enzyme from the in-gel digestion usually gave a few more peptide peaks, which were important for the identification of some proteins. Internal calibration always gave better results. However, for a large number of samples, two step calibrations (i.e. database search with peptide mass from external calibration, then the use of peptide masses from the search result as internal calibrants) were useful and convenient. From the evaluation and combination of steps that were already developed by others, we established a single overall procedure for peptide identification from a polyacrylamide gel.  相似文献   
14.
The Schizosaccharomyces pombe pfh1+ gene (PIF1 homolog) encodes an essential enzyme that has both DNA helicase and ATPase activities and is implicated in lagging strand DNA processing. Mutations in the pfh1+ gene suppress a temperature-sensitive allele of cdc24+, which encodes a protein that functions with Schizosaccharomyces pombe Dna2 in Okazaki fragment processing. In this study, we describe the enzymatic properties of the Pfh1 helicase and the genetic interactions between pfh1 and cdc24, dna2, cdc27 or pol 3, all of which are involved in the Okazaki fragment metabolism. We show that a full-length Pfh1 fusion protein is active as a monomer. The helicase activity of Pfh1 displaced only short (<30 bp) duplex DNA regions efficiently in a highly distributive manner and was markedly stimulated by the presence of a replication-fork-like structure in the substrate. The temperature-sensitive phenotype of a dna2-C2 or a cdc24-M38 mutant was suppressed by pfh1-R20 (a cold-sensitive mutant allele of pfh1) and overexpression of wild-type pfh1+ abolished the ability of the pfh1 mutant alleles to suppress dna2-C2 and cdc24-M38. Purified Pfh1-R20 mutant protein displayed significantly reduced ATPase and helicase activities. These results indicate that the simultaneous loss-of-function mutations of pfh1+ and dna2+ (or cdc24+) are essential to restore the growth defect. Our genetic data indicate that the Pfh1 DNA helicase acts in concert with Cdc24 and Dna2 to process single-stranded DNA flaps generated in vivo by pol δ-mediated lagging strand displacement DNA synthesis.  相似文献   
15.
Individual mouse strains differ significantly in terms of behavior and cognitive function. Strain-specific variation of metabolic protein levels in the hippocampus among various commonly used mouse strains, however, has not been investigated yet. A proteomic approach based on two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry [high capacity ion trap (HCT)] has been chosen to address this question by determining strain-dependent levels of metabolic proteins in hippocampal tissue of four inbred and one outbred mouse strain. Statistical analysis of protein spots on 2-DE gels of the individual strains (n = 10) revealed significant strain-dependent differences in densities of 39 spots. Subsequent HCT analysis led to the identification of 22 different metabolic proteins presenting with differential protein levels among the five mouse strains investigated. Among those are proteins concerned with the metabolism of amino acid, nucleic acid, carbohydrate and energy. Moreover, proteins known to play a pivotal role in the processes of learning and memory, such as calcium/calmodulin-dependent protein kinase type II alpha chain, were found to present with significant inter-strain variability, which is also in agreement with our previous reports. Strain-specific protein levels of metabolic proteins in the mouse hippocampus may provide some insight into the molecular underpinnings and genetic determination of strain-dependent neuronal function. Furthermore, data presented herein emphasize the significance of the genetic background for the analysis of metabolic pathways in the hippocampus in wild-type mice as well as in gene-targeting experiments.  相似文献   
16.
17.
A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5–10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.  相似文献   
18.
A novel facultatively anaerobic strain DH1T was isolated from deep sub-seafloor sediment at a depth of 900 m below the seafloor off Seo-do (the west part of Dokdo Island) in the East Sea of the Republic of Korea. The new strain was characterized using polyphasic approaches. The isolate was Gram-stain-negative, motile by gliding, non-spore-forming rods, oxidase-negative, and catalase-positive; and formed colonies of orange-red color. The NaCl range for growth was 0.5–7.0% (w/v) and no growth was observed in the absence of NaCl. The isolate grew optimally at 30°C, with 2% (w/v) NaCl and at pH 7. The cell-wall hydrolysates contained ribose as a major sugar. The DNA G+C content was 40.8 mol%. The closest related strains are Sunxiuqinia faeciviva JAM-BA0302T and Sunxiuqinia elliptica DQHS-4T (97.9 and 96.3% sequence similarity, respectively). The level of DNA-DNA relatedness between strain DH1T and S. faeciviva JAM-BA0302T was around 41% (but only 6% between DH1T and S. elliptica DQHS-4T). The major cellular fatty acids of the isolate were contained iso-C15:0 (25.9%), anteiso-C15:0 (16.7%), and summed feature 9 (comprising C16:0 3-OH and/or unknown fatty acid of dimethylacetal ECL 17.157; 13.2%). The predominant menaquinone was MK-7. On the basis of polyphasic evidence from this study, the isolate was considered to represent a novel species of the genus Sunxiuqinia, for which the name Sunxiuqinia dokdonensis sp. nov. is proposed; the type strain is DH1T (=KCTC 32503T =CGMCC 1.12676T =JCM 19380T).  相似文献   
19.
Transglutaminase 2 (TGase2) is a calcium-dependent, cross-linking enzyme that catalyzes iso-peptide bond formation between peptide-bound lysine and glutamine residues. TGase 2 can activate NF-κB through the polymerization-mediated depletion of I-κBα without IKK activation. This NF-κB activation mechanism is associated with drug resistance in cancer cells. However, the polymers cannot be detected in cells, while TGase 2 over-expression depletes free I-κBα, which raises the question of how the polymerized I-κBα can be metabolized in cells. Among proteasome, lysosome and calpain systems, calpain inhibition was found to effectively increase the accumulation of I-κBα polymers in MCF7 cells transfected with TGase 2, and induced high levels of I-κBα polymers as well in MDA-MB-231 breast cancer cells that naturally express a high level of TGase 2. Inhibition of calpain also boosted the level of I-κBα polymers in HEK-293 cells in case of TGase 2 transfection either with I-κBα or I-κBα mutant (S32A, S36A). Interestingly, the combined inhibition of calpain and the proteasome resulted in an increased accumulation of both I-κBα polymers and I-κBα, concurrent with an inhibition of NF-κB activity in MDA-MB-231 cells. This suggests that μ-calpain proteasome-dependent I-κBα polymer degradation may contribute to cancer progression through constitutive NF-κB activation.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号