首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20379篇
  免费   2015篇
  国内免费   2017篇
  24411篇
  2024年   71篇
  2023年   289篇
  2022年   595篇
  2021年   951篇
  2020年   699篇
  2019年   903篇
  2018年   808篇
  2017年   639篇
  2016年   876篇
  2015年   1290篇
  2014年   1527篇
  2013年   1611篇
  2012年   1937篇
  2011年   1719篇
  2010年   1153篇
  2009年   1024篇
  2008年   1227篇
  2007年   1112篇
  2006年   1009篇
  2005年   887篇
  2004年   836篇
  2003年   785篇
  2002年   665篇
  2001年   324篇
  2000年   267篇
  1999年   216篇
  1998年   157篇
  1997年   119篇
  1996年   105篇
  1995年   71篇
  1994年   104篇
  1993年   62篇
  1992年   56篇
  1991年   43篇
  1990年   50篇
  1989年   34篇
  1988年   31篇
  1987年   26篇
  1986年   22篇
  1985年   35篇
  1984年   14篇
  1983年   18篇
  1982年   18篇
  1981年   4篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1973年   2篇
  1971年   2篇
  1961年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
62.
63.
Autophagic and endocytic pathways are tightly regulated membrane rearrangement processes that are crucial for homeostasis, development and disease. Autophagic cargo is delivered from autophagosomes to lysosomes for degradation through a complex process that topologically resembles endosomal maturation. Here, we report that a Beclin1-binding autophagic tumour suppressor, UVRAG, interacts with the class C Vps complex, a key component of the endosomal fusion machinery. This interaction stimulates Rab7 GTPase activity and autophagosome fusion with late endosomes/lysosomes, thereby enhancing delivery and degradation of autophagic cargo. Furthermore, the UVRAG-class-C-Vps complex accelerates endosome-endosome fusion, resulting in rapid degradation of endocytic cargo. Remarkably, autophagosome/endosome maturation mediated by the UVRAG-class-C-Vps complex is genetically separable from UVRAG-Beclin1-mediated autophagosome formation. This result indicates that UVRAG functions as a multivalent trafficking effector that regulates not only two important steps of autophagy - autophagosome formation and maturation - but also endosomal fusion, which concomitantly promotes transport of autophagic and endocytic cargo to the degradative compartments.  相似文献   
64.
A new coding sequence of the procarboxypeptidase B gene was obtained from SD rat fresh pancreas by RT-PCR and highly expressed in Escherichia coli in inclusion bodies. The folded procarboxypeptidase B was subjected to trypsin enzymatic cleavage to produce active carboxypeptidase B, subsequently, carboxypeptidase B was effectively purified with anion exchange chromatography DEAE-FF and hydrophobic interaction chromatography Octyl FF, as a result, 40 mg carboxypeptidase B per litre cell culture with specific activity 7.42 u/mg was achieved. Further research showed that the obtained recombinant carboxypeptidase B could substitute carboxypeptidase B isolated from pancreas.  相似文献   
65.
Chronic hepatitis B virus (HBV) infection is characterized by sustained liver inflammation with an influx of lymphocytes, which contributes to the development of cirrhosis and hepatocellular carcinoma. The mechanisms underlying this immune-mediated hepatic pathogenesis remain ill defined. We report in this article that repetitive infusion of anti-CD137 agonist mAb in HBV-transgenic mice closely mimics this process by sequentially inducing hepatitis, fibrosis, cirrhosis, and, ultimately, liver cancer. CD137 mAb initially triggers hepatic inflammatory infiltration due to activation of nonspecific CD8(+) T cells with memory phenotype. CD8(+) T cell-derived IFN-γ plays a central role in the progression of chronic liver diseases by actively recruiting hepatic macrophages to produce fibrosis-promoting cytokines and chemokines, including TNF-α, IL-6, and MCP-1. Importantly, the natural ligand of CD137 was upregulated significantly in circulating CD14(+) monocytes in patients with chronic hepatitis B infection and closely correlated with development of liver cirrhosis. Thus, sustained CD137 stimulation may be a contributing factor for liver immunopathology in chronic HBV infection. Our studies reveal a common molecular pathway that is used to defend against viral infection but also causes chronic hepatic diseases.  相似文献   
66.
67.
68.
Hericium erinaceus is a well known edible and medicinal mushroom used in East-Asia. Recently, H. erinaceus has attracted a lot of attention owing to its antitumor, immuno-modulatory, and cytotoxic effect. It has been postulated that the fruiting body of H. erinaceus contains a polysaccharide that is similar to β-D-glucan, which is known to have antitumor activity against Sarcoma 180. However, optimized liquid culture conditions for enhanced polysaccharide productivity have yet to be developed, which is a necessary step for industrial applications. Therefore, the aim of this study was to determine the optimal liquid culture conditions for maximum polysaccharide production. In shake flask cultures, the optimal concentration of ascorbic acid was found to be 2.0 g/L, which prevented the broth from changing color from yellow to black. The optimal culture conditions were determined to be 23°C, 200 rpm, and a 10% inoculum size, at an uncontrolled initial pH. In addition, the modified medium contained 20 g/L glucose, 10 g/L yeast extract, and 2.0 g/L ascorbic acid. The maximum mycelial biomass and exo-polysaccharide (EPS) production in the modified medium containing uracil was 13.43 and 1.26 g/L, respectively.  相似文献   
69.
Members of the Pumilio (Pum) family of RNA-binding proteins act as translational repressors and are required for germ cell development and asymmetric division. We identified the chicken Pum1 and Pum2 genes and analyzed their expression patterns in various tissues. Comparative sequence analysis of the Pum1 and Pum2 proteins from the drosophila, chicken, mouse, and human revealed a high degree of evolutionary conservation in terms of the levels of homology of the peptide sequences and the structure of Pumilio homology domain (PUM-HD), C-terminal RNA-binding domain, with similar spacing between the adjacent Pum eight tandem repeats. In addition, phylogenetic patterns of pumilio family showed that Pum 1 and 2 of chicken are more closely related to those of mouse and human than other species and Pum1 is more conserved than Pum2. Using real-time RT-PCR, the expression levels of the Pum1 and Pum2 genes were found to be highest in hatched female gonads, and high-level expression of Pum2 was detected in 12-day and hatched gonads among the various chicken embryonic tissues tested. In adult tissues, the expression levels of Pum1 and Pum2 were expressed at higher levels in the testis and muscle than in any other tissue. The characteristics of the tissue-specific expression of Pum genes suggest that Pum1 and Pum2 have effects crucially in particular stage during development of chicken gonads depending on sexual maturation.  相似文献   
70.
One of the ‘side effects’ of our modern lifestyle is a range of metabolic diseases: the incidence of obesity, type 2 diabetes and associated cardiovascular diseases has grown to pandemic proportions. This increase, which shows no sign of reversing course, has occurred despite education and new treatment options, and is largely due to a lack of knowledge about the precise pathology and etiology of metabolic disorders. Accumulating evidence suggests that the communication pathways linking the brain, gut and adipose tissue might be promising intervention points for metabolic disorders. To maintain energy homeostasis, the brain must tightly monitor the peripheral energy state. This monitoring is also extremely important for the brain’s survival, because the brain does not store energy but depends solely on a continuous supply of nutrients from the general circulation. Two major groups of metabolic inputs inform the brain about the peripheral energy state: short-term signals produced by the gut system and long-term signals produced by adipose tissue. After central integration of these inputs, the brain generates neuronal and hormonal outputs to balance energy intake with expenditure.Miscommunication between the gut, brain and adipose tissue, or the degradation of input signals once inside the brain, lead to the brain misunderstanding the peripheral energy state. Under certain circumstances, the brain responds to this miscommunication by increasing energy intake and production, eventually causing metabolic disorders. This poster article overviews current knowledge about communication pathways between the brain, gut and adipose tissue, and discusses potential research directions that might lead to a better understanding of the mechanisms underlying metabolic disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号