首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9202篇
  免费   670篇
  国内免费   7篇
  9879篇
  2024年   7篇
  2023年   40篇
  2022年   119篇
  2021年   187篇
  2020年   123篇
  2019年   180篇
  2018年   276篇
  2017年   209篇
  2016年   357篇
  2015年   480篇
  2014年   593篇
  2013年   684篇
  2012年   851篇
  2011年   756篇
  2010年   494篇
  2009年   441篇
  2008年   671篇
  2007年   576篇
  2006年   473篇
  2005年   420篇
  2004年   439篇
  2003年   379篇
  2002年   305篇
  2001年   168篇
  2000年   153篇
  1999年   112篇
  1998年   76篇
  1997年   39篇
  1996年   45篇
  1995年   24篇
  1994年   18篇
  1993年   17篇
  1992年   30篇
  1991年   36篇
  1990年   17篇
  1989年   20篇
  1988年   12篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1980年   2篇
  1979年   3篇
  1977年   3篇
  1975年   2篇
  1974年   3篇
  1970年   3篇
  1968年   2篇
  1967年   3篇
排序方式: 共有9879条查询结果,搜索用时 15 毫秒
181.
182.
Although many previous reports have examined the function of prostaglandin E2 (PGE2) in the migration and proliferation of various cell types, the role of the actin cytoskeleton in human mesenchymal stem cells (hMSCs) migration and proliferation has not been reported. The present study examined the involvement of profilin‐1 (Pfn‐1) and filamentous‐actin (F‐actin) in PGE2‐induced hMSC migration and proliferation and its related signal pathways. PGE2 (10?6 M) increased both cell migration and proliferation, and also increased E‐type prostaglandin receptor 2 (EP2) mRNA expression, β‐arrestin‐1 phosphorylation, and c‐Jun N‐terminal kinase (JNK) phosphorylation. Small interfering RNA (siRNA)‐mediated knockdown of β‐arrestin‐1 and JNK (‐1, ‐2, ‐3) inhibited PGE2‐induced growth of hMSCs. PGE2 also activated Pfn‐1, which was blocked by JNK siRNA, and induced F‐actin level and organization. Downregulation of Pfn‐1 by siRNA decreased the level and organization of F‐actin. In addition, specific siRNA for TRIO and F‐actin‐binding protein (TRIOBP) reduced the PGE2‐induced increase in hMSC migration and proliferation. Together, these experimental data demonstrate that PGE2 partially stimulates hMSCs migration and proliferation by interaction of Pfn‐1 and F‐actin via EP2 receptor‐dependent β‐arrestin‐1/JNK signaling pathways. J. Cell. Physiol. 226: 559–571, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
183.
In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or slow. The quasi-steady-state approximation (QSSA) utilizes timescale separation to project models of biochemical networks onto lower-dimensional slow manifolds. As a result, fast elementary reactions are not modeled explicitly, and their effect is captured by nonelementary reaction-rate functions (e.g., Hill functions). The accuracy of the QSSA applied to deterministic systems depends on how well timescales are separated. Recently, it has been proposed to use the nonelementary rate functions obtained via the deterministic QSSA to define propensity functions in stochastic simulations of biochemical networks. In this approach, termed the stochastic QSSA, fast reactions that are part of nonelementary reactions are not simulated, greatly reducing computation time. However, it is unclear when the stochastic QSSA provides an accurate approximation of the original stochastic simulation. We show that, unlike the deterministic QSSA, the validity of the stochastic QSSA does not follow from timescale separation alone, but also depends on the sensitivity of the nonelementary reaction rate functions to changes in the slow species. The stochastic QSSA becomes more accurate when this sensitivity is small. Different types of QSSAs result in nonelementary functions with different sensitivities, and the total QSSA results in less sensitive functions than the standard or the prefactor QSSA. We prove that, as a result, the stochastic QSSA becomes more accurate when nonelementary reaction functions are obtained using the total QSSA. Our work provides an apparently novel condition for the validity of the QSSA in stochastic simulations of biochemical reaction networks with disparate timescales.  相似文献   
184.
4-α-Glucanotransferases possess strong transglycosylation activity which has been used in various carbohydrate chemistry fields. Due to safety issues of the recombinant enzymes we chose Bacillus subtilis as an expression host to produce a thermostable 4-α-glucanotransferase from Thermus scotoductus (TSαGT). The HpaII promoter in the Gram-positive bacterial vector pUB110 was used first to express TSαGT gene in B. subtilis. However, the activity of TSαGT in B. subtilis was only 4% of that in our previous Escherichia coli system. Two expression systems constructed by sequential alignment of another constitutive promoter for either α-amylase from B. subtilis NA64 or maltogenic amylase from Bacillus licheniformis downstream of the HpaII promoter elevated the TSαGT productivity by 11- and 12-fold, respectively, compared to the single HpaII promoter system. In conclusion, the dual promoter systems in this study were much better than the single promoter system to express the TSαGT gene in B. subtilis.  相似文献   
185.
The elucidation of factors that support human mesenchymal stem cells (hMSCs) growth has remained unresolved partly because of the reliance of many researchers on ill‐defined, proprietary medium formulation. Thus, we investigated the effects of high glucose (D ‐glucose, 25 mM) on hMSCs proliferation. High glucose significantly increased [3H]‐thymidine incorporation and cell‐cycle regulatory protein expression levels compared with 5 mM D ‐glucose or 25 mM L ‐glucose. In addition, high glucose increased transforming growth factor‐β1 (TGF‐β1) mRNA and protein expression levels. High glucose‐induced cell‐cycle regulatory protein expression levels and [3H]‐thymidine incorporation, which were inhibited by TGF‐β1 siRNA transfection and TGF‐β1 neutralizing antibody treatment. High glucose‐induced phosphorylation of protein kinase C (PKC), p44/42 mitogen‐activated protein kinases (MAPKs), p38 MAPK, Akt, and mammalian target of rapamycin (mTOR) in a time‐dependent manner. Pretreatment of PKC inhibitors (staurosporine, 10?6 M; bisindolylmaleimide I, 10?6 M), LY 294002 (PI3 kinase inhibitor, 10?6 M), Akt inhibitor (10?5 M), PD 98059 (p44/42 MAPKs inhibitor, 10?5 M), SB 203580 (p38 MAPK inhibitor, 10?6 M), and rapamycin (mTOR inhibitor, 10?8 M) blocked the high glucose‐induced cellular proliferation and TGF‐β1 protein expression. In conclusion, high glucose stimulated hMSCs proliferation through TGF‐β1 expression via Ca2+/PKC/MAPKs as well as PI3K/Akt/mTOR signal pathways. J. Cell. Physiol. 224:59–70, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   
186.
To understand protozoan, viral, and bacterial infections in diarrheal patients, we analyzed positivity and mixed-infection status with 3 protozoans, 4 viruses, and 10 bacteria in hospitalized diarrheal patients during 2004-2006 in the Republic of Korea. A total of 76,652 stool samples were collected from 96 hospitals across the nation. The positivity for protozoa, viruses, and bacteria was 129, 1,759, and 1,797 per 10,000 persons, respectively. Especially, Cryptosporidium parvum was highly mixed-infected with rotavirus among pediatric diarrheal patients (29.5 per 100 C. parvum positive cases), and Entamoeba histolytica was mixed-infected with Clostridium perfringens (10.3 per 100 E. histolytica positive cases) in protozoan-diarrheal patients. Those infected with rotavirus and C. perfringens constituted relatively high proportions among mixed infection cases from January to April. The positivity for rotavirus among viral infection for those aged ≤ 5 years was significantly higher, while C. perfringens among bacterial infection was higher for ≥ 50 years. The information for association of viral and bacterial infections with enteropathogenic protozoa in diarrheal patients may contribute to improvement of care for diarrhea as well as development of control strategies for diarrheal diseases in Korea.  相似文献   
187.
By nature of their segmented RNA genome, influenza A viruses (IAVs) have the potential to generate variants through a reassortment process. The influenza nonstructural (NS) gene is critical for a virus to counteract the antiviral responses of the host. Therefore, a newly acquired NS segment potentially determines the replication efficiency of the reassortant virus in a range of different hosts. In addition, the C-terminal PDZ-binding motif (PBM) has been suggested as a pathogenic determinant of IAVs. To gauge the pandemic potential from human and avian IAV reassortment, we assessed the replication properties of NS-reassorted viruses in cultured cells and in the lungs of mice and determined their transmissibility in guinea pigs. Compared with the recombinant A/Korea/01/2009 virus (rK09; 2009 pandemic H1N1 strain), the rK09/VN:NS virus, in which the NS gene was adopted from the A/Vietnam/1203/2004 virus (a human isolate of the highly pathogenic avian influenza H5N1 virus strains), exhibited attenuated virulence and reduced transmissibility. However, the rK09/VN:NS-PBM virus, harboring the PBM in the C-terminus of the NS1 protein, recovered the attenuated virulence of the rK09/VN:NS virus. In a guinea pig model, the rK09/VN:NS-PBM virus showed even greater transmission efficiency than the rK/09 virus. These results suggest that the PBM in the NS1 protein may determine viral persistence in the human and avian IAV interface.  相似文献   
188.
To understand the factors that induce floral senescence in Hibiscus syriacus L., we have investigated the effects of various chemical agents on flower senescence at two different flowering stages, before and after full bloom, as well as the relationship between flower longevity and endogenous ethylene production before full bloom. Treatments with ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), and ethephon enhanced floral senescence, while aminoethoxyvinylglycine (AVG) promoted flower longevity regardless of treatment timing. Although ethanol slightly extended flower longevity, abscisic acid (ABA), nitric oxide, boric acid and sucrose, which have been reported to affect flower longevity or senescence, had no effect on H. syriacus floral senescence. The polyamine spermine (SPM), methylglyoxal-bis(guanylhydrazone) (MGBG), an inhibitor of SPM biosynthesis, and cycloheximide (CHI) accelerated flower senescence when applied before full bloom, but had no effect when applied after full bloom. SPM, MGBG and CHI treatments resulted in enhanced ethylene production during flower opening, and the promotion of flower senescence is mediated by ethylene production prior to full bloom. Furthermore, endogenous ethylene, spontaneously produced before blooming, was closely associated with floral senescence. These results suggest that ethylene production during flower opening plays a key role in determining the timing of Hibiscus flower senescence.  相似文献   
189.
To investigate the associations of uncoupling protein (UCP)2 and UCP3 gene variants with overweight and related traits, we genotyped UCP2−866G>A, UCP2Ala55Val, and UCP3−55C>T in 737 Korean children and 732 adults and collected data regarding anthropometric status and blood biochemistry. Information concerning the children's lifestyles and dietary habits was collected. The UCP2−866G>A and UCP3−55C>T gene variants showed significant associations with BMI level, waist circumference, and body weight in the children but not in the adults. Compared with −866GG carriers, the −866GA and AA carriers showed a strong decreasing trend in the risk for overweight (odds ratio (OR), 0.67; 95% confidence interval (CI), 0.45–1.01; P = 0.053). In comparison with UCP3−55CC carriers, children carrying −55CT and TT showed a significant reduction in the risk of overweight (OR, 0.67; 95% CI, 0.46–0.98; P = 0.039). There was also evidence of interactions between the effects of the combined UCP2−UCP3 genotype and obesity‐related metabolic traits. The greatest protective effect against overweight was seen in those with the combined genotype non‐UCP2−866GG and non‐UCP3−55CC, as compared with those carrying both UCP2−866GG and UCP3−55CC (OR, 0.60; 95% CI, 0.38–0.95; P = 0.030). In the subgroup with a low level of physical activity, UCP3−55CC carriers had higher BMI values than UCP3−55T carriers (16.6 ± 2.3 kg/m2 vs. 16.1 ± 1.9 kg/m2, P = 0.016). Low physical activity may aggravate the susceptibility to overweight in UCP2−866GG and UCP3−55CC carriers.  相似文献   
190.
International Journal of Peptide Research and Therapeutics - This study presents a simple approach in design of tripeptides as a competitive inhibitor for 3-hydroxy-3-methylglutaryl CoA reductase...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号