The activation of transglutaminase 2 (TG2), an enzyme that catalyzes post-translational modifications of proteins, has been
implicated in apoptosis, cell adhesion and inflammatory responses. We previously reported that intracellular TG2 is activated
under oxidative stress conditions, such as ultraviolet irradiation, ischemia-reperfusion, and hypoxia. In this study, we examined
the effect of genotoxic stress on the intracellular activity of TG2 using doxorubicin which generates reactive oxygen species
that lead to double-strand breakage of DNA. We demonstrated that doxorubicin elicits the persistent activation of TG2. Doxorubicin-induced
TG2 activity was suppressed by treatment with caffeine at the early phase, N-acetylcysteine at the mid-phase, and EGTA at
the late phase. However, treatment with a blocking antibody against TGFβ or toll-like receptor 2 showed no effect on TG2 activity,
indicating that at least three different signaling pathways may be involved in the process of TG2 activation. In addition,
using MEF cells defective for TG2 and cells overexpressing an activesite mutant of TG2, we revealed that doxorubicin-induced
cell death is inversely correlated with TG2 activity. Our findings indicate that the persistent activation of TG2 by doxorubicin
contributes to cell survival, suggesting that the mechanism-based inhibition of TG2 may be a novel strategy to prevent drug-resistance
in doxorubicin treatment. 相似文献
Forest fires are one of the most frequent and important causes of forest disturbances, the occurrence of which is globally increasing due to the effects of climate change. This study aimed to determine the impacts of fire and human activity on arthropod communities in affected forests. Twelve study sites in three burned areas were selected for this study. Intensities of disturbance in the study sites were characterized as follows: Disturbance Degree (DD) 0 (no fire), DD 1 (surface fire), DD 2 (crown fire), and DD 3 (crown fire followed by reforestation). Arthropods were collected using pitfall traps. Fourteen arthropod taxa (families, orders or classes), which are relatively homogeneous in their feeding habits and abundant, were analyzed. Depth of litter layer was selected as an environmental indicator for disturbance intensity, as it decreases linearly as the degree of disturbance increased. Changes of arthropod abundance in response to disturbance differed among functional guilds. As disturbance intensity increased, the abundance of detritivores decreased, but the abundance of herbivores increased. However, the abundance of predators varied between taxa. Formicidae and Araneae increased in disturbed sites, whereas Carabidae and Staphylinidae did not change. The abundance of Thysanura and Diptera was highly correlated with disturbance intensity, and may be suitable as a bioindicator for forest disturbance. Arthropod communities were more heterogeneous in forests of intermediate disturbance. 相似文献
Maize and Arabidopsis root apical meristems differ in several aspects of their radial organization and ontogeny. Despite the large evolutionary distance and differences in root radial patterning, analysis of the putative maize ortholog of the Arabidopsis patterning gene SCARECROW (SCR) revealed expression localized to the endodermis, which is similar to its expression in Arabidopsis. Expression in maize extends through the quiescent center, a population of mitotically inactive cells formerly thought to be undifferentiated and to lack radial pattern information. Zea mays SCARECROW (ZmSCR), the putative maize SCR ortholog, was used as a molecular marker to investigate radial patterning during regeneration of the root tip after either whole or partial excision. Analysis of the dynamic expression pattern of ZmSCR as well as other markers indicates the involvement of positional information as a primary determinant in regeneration of the root radial pattern. 相似文献
False lumen thrombosis (FLT) in type B aortic dissection has been associated with the progression of dissection and treatment outcome. Existing computational models mostly assume rigid wall behavior which ignores the effect of flap motion on flow and thrombus formation within the FL. In this study, we have combined a fully coupled fluid–structure interaction (FSI) approach with a shear-driven thrombosis model described by a series of convection–diffusion reaction equations. The integrated FSI-thrombosis model has been applied to an idealized dissection geometry to investigate the interaction between vessel wall motion and growing thrombus. Our simulation results show that wall compliance and flap motion can influence the progression of FLT. The main difference between the rigid and FSI models is the continuous development of vortices near the tears caused by drastic flap motion up to 4.45 mm. Flap-induced high shear stress and shear rates around tears help to transport activated platelets further to the neighboring region, thus speeding up thrombus formation during the accelerated phase in the FSI models. Reducing flap mobility by increasing the Young’s modulus of the flap slows down the thrombus growth. Compared to the rigid model, the predicted thrombus volume is 25% larger using the FSI-thrombosis model with a relatively mobile flap. Furthermore, our FSI-thrombosis model can capture the gradual effect of thrombus growth on the flow field, leading to flow obstruction in the FL, increased blood viscosity and reduced flap motion. This model is a step closer toward simulating realistic thrombus growth in aortic dissection, by taking into account the effect of intimal flap and vessel wall motion.
Protein quality control mechanisms decline during the process of cardiac aging. This enables the accumulation of protein aggregates and damaged organelles that contribute to age‐associated cardiac dysfunction. Macroautophagy is the process by which post‐mitotic cells such as cardiomyocytes clear defective proteins and organelles. We hypothesized that late‐in‐life exercise training improves autophagy, protein aggregate clearance, and function that is otherwise dysregulated in hearts from old vs. adult mice. As expected, 24‐month‐old male C57BL/6J mice (old) exhibited repressed autophagosome formation and protein aggregate accumulation in the heart, systolic and diastolic dysfunction, and reduced exercise capacity vs. 8‐month‐old (adult) mice (all p < 0.05). To investigate the influence of late‐in‐life exercise training, additional cohorts of 21‐month‐old mice did (old‐ETR) or did not (old‐SED) complete a 3‐month progressive resistance treadmill running program. Body composition, exercise capacity, and soleus muscle citrate synthase activity improved in old‐ETR vs. old‐SED mice at 24 months (all p < 0.05). Importantly, protein expression of autophagy markers indicate trafficking of the autophagosome to the lysosome increased, protein aggregate clearance improved, and overall function was enhanced (all p < 0.05) in hearts from old‐ETR vs. old‐SED mice. These data provide the first evidence that a physiological intervention initiated late‐in‐life improves autophagic flux, protein aggregate clearance, and contractile performance in mouse hearts. 相似文献