首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7894篇
  免费   567篇
  国内免费   3篇
  2022年   45篇
  2021年   96篇
  2020年   49篇
  2019年   66篇
  2018年   83篇
  2017年   68篇
  2016年   126篇
  2015年   243篇
  2014年   282篇
  2013年   379篇
  2012年   417篇
  2011年   462篇
  2010年   341篇
  2009年   304篇
  2008年   406篇
  2007年   433篇
  2006年   441篇
  2005年   397篇
  2004年   419篇
  2003年   394篇
  2002年   405篇
  2001年   113篇
  2000年   99篇
  1999年   115篇
  1998年   153篇
  1997年   99篇
  1996年   97篇
  1995年   111篇
  1994年   92篇
  1993年   100篇
  1992年   83篇
  1991年   77篇
  1990年   88篇
  1989年   69篇
  1988年   72篇
  1987年   48篇
  1986年   70篇
  1985年   46篇
  1984年   73篇
  1983年   62篇
  1982年   80篇
  1981年   87篇
  1980年   73篇
  1979年   70篇
  1978年   60篇
  1977年   48篇
  1976年   43篇
  1975年   39篇
  1974年   44篇
  1973年   24篇
排序方式: 共有8464条查询结果,搜索用时 15 毫秒
121.
122.
123.
Hairy root cultures of Atropa belladonna L. were established by infection either with Agrobacterium rhizogenes ATCC 15834 or MAFF 03-01724, and transgenic plants were obtained from both hairy root cultures. Doubly transformed roots were induced by re-infection of the leaf segments of transgenic Atropa belladonna plants (A. rhizogenes 15834) with MAFF 03-01724. Shoots and viviparous leaves were regenerated from the doubly transformed roots. The genetic transformation was determined by the opine assay (agropine, mannopine and/or mikimopine) and polymerase chain reaction. Physiological changes and tropane alkaloid biosynthesis in the hairy roots (singly and doubly transformed) were investigated. The alkaloid content in the doubly transformed root strain was intermediate as compared to the root strains which were singly transformed. On the other hand endogenous IAA levels in doubly transformed roots were significantly decreased compared to both singly transformed roots.Abbreviations BA benzyladenine - IAA indoleacetic acid - NAA naphthaleneacetic acid - PCR polymerase chain reaction - t-ZR trans-zeatin  相似文献   
124.
125.
The phytochrome chromophore-deficient mutant, pew1, of Nicotiana plumbaginifolia exhibited decreased germination and slower dehydration of detached leaves during water stress as compared with the wild-type. These physiological processes are controlled by abscisic acid (ABA) and we examined, therefore, whether phytochrome plays a specific role in the regulation of ABA metabolism using the pew1 mutant. The ABA contents of mature seeds and young leaves were analysed and in both cases mutant material was found to contain higher amounts of ABA as compared with the wild-type. This indicates that the phytochrome activation can lead to a decrease of the ABA level in the wild-type plant. The role of phytochromes was investigated in greater detail using the ABA-deficient mutant aba1 of N. plumbaginifolia exhibiting an early and synchronous germination. This mutant accumulates at very high levels a metabolite derived from a precursor (ABA-aldehyde) in the ABA biosynthetic pathway. The first biochemical characterization of this molecule, which corresponds to the glucose-conjugated ABA-alcohol (ABA-AG) is described. A pew1-aba1 double mutant exhibiting both an etiolated growth and early germination was also obtained. The comparable accumulation of ABA-AG in the pew1-aba1 double mutant as compared with the aba1 mutant allowed the proposition that, in a wild-type plant, the phytochrome-mediated light signal enhances ABA degradation rather than inhibits its biosynthesis.  相似文献   
126.
127.
81 wild forms and 110 cultivated cowpea,Vigna unguiculata, accessions from 21 countries of Africa were screened for variability in seed storage proteins. Total seed proteins, albumin and globulin fractions were investigated by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and isoelectric focusing (IEF) of nonreduced and/or reduced samples in one- and two-dimensional procedures. The globulin fraction is heterogeneous in molecular weight and contains both legumin-like components and three to six nondisulfide-linked subunits. Three globulin subunits, with molecular weights 110, 76, and 41 kD were found to be composed of disulfide-linked polypeptides. In the nondisulfide-linked fraction, both cultivated and wild forms exhibited patterns of four types (A–D). This fraction contains polypeptide subunits of molecular weights 62, 56, and 52 kD for A type, 62, 56, 54, and 52 kD for B type, 62, 56, 52, and 50 kD for C type, and at least 62, 56, 54, 52, 50, and 49 kD for D type. These subunits present similar multiple charge forms but C and D types possess more basic specific 50 and 49 kD nondisulfide linked components. Major albumin fraction contains subunits of 94, 86, 32, and 24kD. No infraspecific variation was observed in albumin or legumin-like fractions. The discussion is focussed on the relations between genetic variability assessed by storage protein coding genes and phenotypic variability.  相似文献   
128.
We report on a novel chimeric gene that confers kanamycin resistance on tobacco plastids. The kan gene from the bacterial transposon Tn5, encoding neomycin phosphotransferase (NPTII), was placed under control of plastid expression signals and cloned between rbcL and ORF512 plastid gene sequences to target the insertion of the chimeric gene into the plastid genome. Transforming plasmid pTNH32 DNA was introduced into tobacco leaves by the biolistic procedure, and plastid transformants were selected by their resistance to 50 g/ml of kanamycin monosulfate. The regenerated plants uniformly transmitted the transplastome to the maternal progeny. Resistant clones resulting from incorporation of the chimeric gene into the nuclear genome were also obtained. However, most of these could be eliminated by screening for resistance to high levels of kanamycin (500 g/ml). Incorporation of kan into the plastid genome led to its amplification to a high copy number, about 10000 per leaf cell, and accumulation of NPTII to about 1% of total cellular protein.  相似文献   
129.
We describe a novel modification of the polymerase chain reaction for efficient in vitro amplification of genomic DNA sequences flanking short stretches of known sequence. The technique utilizes a target enrichment step, based on the selective isolation of biotinylated fragments from the bulk of genomic DNA on streptavidin-containing support. Subsequently, following ligation with a second universal linker primer, the selected fragments can be amplified to amounts suitable for further molecular studies. The procedure has been applied to recover T-DNA flanking sequences in transgenic tomato plants which could subsequently be used to assign the positions of T-DNA to the molecular map of tomato. The method called supported PCR (sPCR) is a simple and efficient alternative to techniques used in the isolation of specific sequences flanking a known DNA segment.  相似文献   
130.
Summary— Peroxisome proliferators, despite their chemically unrelated structures, share the common property of being able to stimulate the glucuronidation of bilirubin in rodents and, probably, also in man. The aryloxycarboxylic acids (clofibric acid, fenofibrate, bezafibrate, ciprofibrate), tiadenol and probucol, all of which have hypolipidemic properties, as well as the fatty acid-like perfluorodecanoic acid all enhanced the expression of the UDP-glucuronosyltransferase (UGT) form involved in the conjugation of the pigment. This induction is manifested by an increase in the mRNA species encoding the protein with a subsequent increase in the neosynthesis of the corresponding protein in the endoplasmic reticulum. The induction process is concomitant with that of cytochrome P-450-IVA1 and cytosolic epoxide hydrolase, which, like bilirubin UGT, are mainly involved in the metabolism of endogenous substrates. With a series of carboxylic acids related to clofibric acid, it was possible to demonstrate that induction was mediated via specific interactions based on the physicochemical properties of the inducers. Until now, the molecular basis of induction of bilirubin UGT is not known. The peroxisome proliferators that possess a carboxyl group are good substrates of UGT, especially in man. The acylglucuronides formed are known for their instability and reactivity which could contribute to the toxicity encountered in some patients treated with the drugs. There is convincing evidence that UGT bilirubin does not catalyze the glucuronidation of these substances even if the two types of substrate form acylglucuronides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号