首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6548篇
  免费   443篇
  国内免费   3篇
  2022年   32篇
  2021年   68篇
  2020年   34篇
  2019年   59篇
  2018年   62篇
  2017年   53篇
  2016年   96篇
  2015年   192篇
  2014年   224篇
  2013年   303篇
  2012年   338篇
  2011年   363篇
  2010年   293篇
  2009年   250篇
  2008年   338篇
  2007年   367篇
  2006年   362篇
  2005年   338篇
  2004年   357篇
  2003年   348篇
  2002年   356篇
  2001年   92篇
  2000年   77篇
  1999年   104篇
  1998年   127篇
  1997年   84篇
  1996年   83篇
  1995年   96篇
  1994年   76篇
  1993年   89篇
  1992年   72篇
  1991年   63篇
  1990年   74篇
  1989年   57篇
  1988年   55篇
  1987年   39篇
  1986年   52篇
  1985年   36篇
  1984年   63篇
  1983年   57篇
  1982年   69篇
  1981年   76篇
  1980年   65篇
  1979年   55篇
  1978年   47篇
  1977年   42篇
  1976年   34篇
  1975年   35篇
  1974年   36篇
  1973年   18篇
排序方式: 共有6994条查询结果,搜索用时 15 毫秒
991.
The mechanism of the interaction between two genetically determined serum vitamin D-binding protein forms and the muscle skeletal actin was investigated. Vitamin D-binding protein was isolated in a good yield from human serum, using immunoaffinity chromatography. 16 mg of pure vitamin D-binding protein were obtained from 100 ml of serum. The interaction between purified vitamin D-binding protein and skeletal muscle actin was studied by viscosity, delta A (232 nm) measurements and by electron microscopy. The effect of vitamin D-binding protein on actin polymerization is characterized by the decrease of the nucleation and elongation rates and by the decrease of the final concentration of polymerized actin in the steady state. The depolymerizing effect is not the result of direct action on vitamin D-binding protein on F-actin but rather of an increased concentration of the complex of the former protein with G-actin. The characteristics of the vitamin D-binding protein and profilin interactions with actin are similar. Both proteins seem to react only with G-actin.  相似文献   
992.
993.
994.
995.
996.
997.
998.
999.
1. Our results show clearly that the Hofmeister series is not the correct expression of the relative effect of ions on the swelling of gelatin, and that it is not true that chlorides, bromides, and nitrates have "hydrating," and acetates, tartrates, citrates, and phosphates "dehydrating," effects. If the pH of the gelatin is taken into considertion, it is found that for the same pH the effect on swelling is the same for gelatin chloride, nitrate, trichloracetate, tartrate, succinate, oxalate, citrate, and phosphate, while the swelling is considerably less for gelatin sulfate. This is exactly what we should expect on the basis of the combining ratios of the corresponding acids with gelatin since the weak dibasic and tribasic acids combine with gelatin in molecular proportions while the strong dibasic acid H2SO4 combines with gelatin in equivalent proportions. In the case of the weak dibasic acids he anion in combination with gelatin is therefore monovalent and in the case of the strong H2SO4 it is bivalent. Hence it is only the valency and not the nature of the ion in combination with gelatin which affects the degree of swelling. 2. This is corroborated in the experiments with alkalies which show that LiOH, NaOH, KOH, and NH4OH cause the same degree of swelling at the same pH of the gelatin solution and that this swelling is considerably higher than that caused by Ca(OH)2 and Ba(OH)2 for the same pH. This agrees with the results of the titration experiments which prove that Ca(OH)2 and Ba(OH)2 combine with gelatin in equivalent proportions and that hence the cation in combination with the gelatin salt with these two latter bases is bivalent. 3. The fact that proteins combine with acids and alkalies on the basis of the forces of primary valency is therefore not only in full agreement with the influence of ions on the physical properties of proteins but allows us to predict this influence qualitatively and quantitatively. 4. What has been stated in regard to the influence of ions on the swelling of the different gelatin salts is also true in regard to the influence of ions on the relative solubility of gelatin in alcohol-water mixtures. 5. Conductivity measurements of solutions of gelatin salts do not support the theory that the drop in the curves for swelling, osmotic pressure, or viscosity, which occurs at a pH 3.3 or a little less, is due to a drop in the concentration of ionized protein in the solution; nor do they suggest that the difference between the physical properties of gelatin sulfate and gelatin chloride is due to differences in the degree of ionization of these two salts.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号