首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4018篇
  免费   353篇
  国内免费   2篇
  4373篇
  2023年   15篇
  2022年   34篇
  2021年   83篇
  2020年   46篇
  2019年   46篇
  2018年   59篇
  2017年   59篇
  2016年   96篇
  2015年   220篇
  2014年   180篇
  2013年   238篇
  2012年   358篇
  2011年   292篇
  2010年   199篇
  2009年   127篇
  2008年   218篇
  2007年   246篇
  2006年   200篇
  2005年   208篇
  2004年   224篇
  2003年   194篇
  2002年   180篇
  2001年   32篇
  2000年   25篇
  1999年   30篇
  1998年   83篇
  1997年   31篇
  1996年   40篇
  1995年   33篇
  1994年   39篇
  1993年   28篇
  1992年   31篇
  1991年   23篇
  1990年   30篇
  1989年   34篇
  1988年   20篇
  1987年   20篇
  1986年   19篇
  1985年   24篇
  1984年   31篇
  1983年   31篇
  1982年   40篇
  1981年   26篇
  1980年   32篇
  1979年   23篇
  1978年   11篇
  1977年   21篇
  1976年   17篇
  1974年   13篇
  1973年   9篇
排序方式: 共有4373条查询结果,搜索用时 15 毫秒
41.
Decisions typically comprise several elements. For example, attention must be directed towards specific objects, their identities recognized, and a choice made among alternatives. Pairs of competing accumulators and drift-diffusion processes provide good models of evidence integration in two-alternative perceptual choices, but more complex tasks requiring the coordination of attention and decision making involve multistage processing and multiple brain areas. Here we consider a task in which a target is located among distractors and its identity reported by lever release. The data comprise reaction times, accuracies, and single unit recordings from two monkeys’ lateral interparietal area (LIP) neurons. LIP firing rates distinguish between targets and distractors, exhibit stimulus set size effects, and show response-hemifield congruence effects. These data motivate our model, which uses coupled sets of leaky competing accumulators to represent processes hypothesized to occur in feature-selective areas and limb motor and pre-motor areas, together with the visual selection process occurring in LIP. Model simulations capture the electrophysiological and behavioral data, and fitted parameters suggest that different connection weights between LIP and the other cortical areas may account for the observed behavioral differences between the animals.  相似文献   
42.
Ca2+/Calmodulin-dependent protein kinase II (CaMKII) signaling in the heart regulates cardiomyocyte contractility and growth in response to elevated intracellular Ca2+. The δB isoform of CaMKII is the predominant nuclear splice variant in the adult heart and regulates cardiomyocyte hypertrophic gene expression by signaling to the histone deacetylase HDAC4. However, the role of CaMKIIδ in cardiac progenitor cells (CPCs) has not been previously explored. During post-natal growth endogenous CPCs display primarily cytosolic CaMKIIδ, which localizes to the nuclear compartment of CPCs after myocardial infarction injury. CPCs undergoing early differentiation in vitro increase levels of CaMKIIδB in the nuclear compartment where the kinase may contribute to the regulation of CPC commitment. CPCs modified with lentiviral-based constructs to overexpress CaMKIIδB (CPCeδB) have reduced proliferative rate compared with CPCs expressing eGFP alone (CPCe). Additionally, stable expression of CaMKIIδB promotes distinct morphological changes such as increased cell surface area and length of cells compared with CPCe. CPCeδB are resistant to oxidative stress induced by hydrogen peroxide (H2O2) relative to CPCe, whereas knockdown of CaMKIIδB resulted in an up-regulation of cell death and cellular senescence markers compared with scrambled treated controls. Dexamethasone (Dex) treatment increased mRNA and protein expression of cardiomyogenic markers cardiac troponin T and α-smooth muscle actin in CPCeδB compared with CPCe, suggesting increased differentiation. Therefore, CaMKIIδB may serve as a novel modulatory protein to enhance CPC survival and commitment into the cardiac and smooth muscle lineages.  相似文献   
43.
 Levels of indole-3-acetic acid (IAA) were determined in needles from silver fir (Abies alba Mill.) trees in the northern Black Forest. IAA was quantified by gas chromatography (GC) as 1-heptafluorobutyryl-IAA-methylester (HFB-IAA-ME) using electron capture detection. Prior to GC analysis, extensive purification of needle extracts was performed employing two HPLC steps. Peak identity of HFB-IAA-ME was confirmed by combined gas chromatography-mass spectrometry in selected samples. Levels of IAA in needles belonging to different needle age-classes exhibited a cyclic seasonal pattern with highest concentrations in winter and lowest levels in spring when bud-break occurred. Such a cyclic seasonal pattern of IAA levels was also observed in needles from declining fir trees or fir trees suffering from a strong sulfur impact (S-impact) in the field due to a local SO2 source. Levels of IAA increased with increasing needle age. This age dependency of IAA concentrations was most pronounced in late autumn when IAA levels were high and nearly disappeared in spring when IAA levels reached their minimum. In needles from declining fir trees or fir trees suffering from a strong S-impact in the field, IAA levels hardly increased with increasing needle age. It is suggested that in healthy trees high levels of IAA protect older needles from abscission and that the considerable losses of older needles of declining fir trees or of fir trees under S-impact are a consequence of the low levels of IAA found in older needles of such trees. Received: 4 May 1995 / Accepted: 29 August 1995  相似文献   
44.
HIV-1 subtype C (C-HIV) is responsible for most HIV-1 cases worldwide. Although the pathogenesis of C-HIV is thought to predominantly involve CCR5-restricted (R5) strains, we do not have a firm understanding of how frequently CXCR4-using (X4 and R5X4) variants emerge in subjects with progressive C-HIV infection. Nor do we completely understand the molecular determinants of coreceptor switching by C-HIV variants. Here, we characterized a panel of HIV-1 envelope glycoproteins (Envs) (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects who experienced progression from chronic to advanced stages of C-HIV infection, and show that CXCR4-using C-HIV variants emerged in only one individual. Mutagenesis studies and structural models suggest that the evolution of R5 to X4 variants in this subject principally involved acquisition of an “Ile-Gly” insertion in the gp120 V3 loop and replacement of the V3 “Gly-Pro-Gly” crown with a “Gly-Arg-Gly” motif, but that the accumulation of additional gp120 “scaffold” mutations was required for these V3 loop changes to confer functional effects. In this context, either of the V3 loop changes could confer possible transitional R5X4 phenotypes, but when present together they completely abolished CCR5 usage and conferred the X4 phenotype. Our results show that the emergence of CXCR4-using strains is rare in this cohort of untreated individuals with advanced C-HIV infection. In the subject where X4 variants did emerge, alterations in the gp120 V3 loop were necessary but not sufficient to confer CXCR4 usage.  相似文献   
45.
Plant roots constantly secrete compounds into the soil to interact with neighboring organisms presumably to gain certain functional advantages at different stages of development. Accordingly, it has been hypothesized that the phytochemical composition present in the root exudates changes over the course of the lifespan of a plant. Here, root exudates of in vitro grown Arabidopsis plants were collected at different developmental stages and analyzed using GC-MS. Principle component analysis revealed that the composition of root exudates varied at each developmental stage. Cumulative secretion levels of sugars and sugar alcohols were higher in early time points and decreased through development. In contrast, the cumulative secretion levels of amino acids and phenolics increased over time. The expression in roots of genes involved in biosynthesis and transportation of compounds represented in the root exudates were consistent with patterns of root exudation. Correlation analyses were performed of the in vitro root exudation patterns with the functional capacity of the rhizosphere microbiome to metabolize these compounds at different developmental stages of Arabidopsis grown in natural soils. Pyrosequencing of rhizosphere mRNA revealed strong correlations (p<0.05) between microbial functional genes involved in the metabolism of carbohydrates, amino acids and secondary metabolites with the corresponding compounds released by the roots at particular stages of plant development. In summary, our results suggest that the root exudation process of phytochemicals follows a developmental pattern that is genetically programmed.  相似文献   
46.

Background

Glioblastoma multiforme (GBM) cells secrete large amounts of glutamate that can trigger AMPA-type glutamate receptors (AMPARs). This commonly results in Na+ and Ca2+-permeability and thereby in excitotoxic cell death of the surrounding neurons. Here we investigated how the GBM cells themselves survive in a glutamate-rich environment.

Methods and Findings

In silico analysis of published reports shows down-regulation of all ionotropic glutamate receptors in GBM as compared to normal brain. In vitro, in all GBM samples tested, mRNA expression of AMPAR subunit GluR1, 2 and 4 was relatively low compared to adult and fetal total brain mRNA and adult cerebellum mRNA. These findings were in line with primary GBM samples, in which protein expression patterns were down-regulated as compared to the normal tissue. Furthermore, mislocalized expression of these receptors was found. Sequence analysis of GluR2 RNA in primary and established GBM cell lines showed that the GluR2 subunit was found to be partly unedited.

Conclusions

Together with the lack of functional effect of AMPAR inhibition by NBQX our results suggest that down-regulation and afunctionality of AMPARs, enable GBM cells to survive in a high glutamate environment without going into excitotoxic cell death themselves. It can be speculated that specific AMPA receptor inhibitors may protect normal neurons against the high glutamate microenvironment of GBM tumors.  相似文献   
47.
SEPALLATA3: the 'glue' for MADS box transcription factor complex formation   总被引:1,自引:0,他引:1  

Background  

Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study.  相似文献   
48.
CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.Biological membranes are conceptually simple structures that may be generated in vitro according to simple physicochemical principles. In vivo, however, membranes are highly complex and host a plethora of proteins that mediate the transfer of molecules and communication across the membrane. Proteins may be trapped in membrane by their transmembrane domains, anchored by lipid tails, or attach to membrane-integral proteins. A further level of complexity is seen when membrane proteins are not equally distributed but occupy only a limited fraction of the available surface (i.e. when they are polarly localized or when they form small membrane subdomains in the micrometer range). The question of how membrane proteins are retained locally and prevented from diffusing freely is of high importance to cell biology. Polarly localized proteins may be retained in their respective domains by membrane fences; in such a situation, polarly localized proteins are mobile in their domains but cannot diffuse through tightly packed scaffold proteins forming a molecular fence within the membrane. Membrane fences delimiting polar domains have been described in different organisms. For example, diffusion between membrane compartments is prevented in budding yeast (Saccharomyces cerevisiae) at the level of the bud neck (Barral et al., 2000; Takizawa et al., 2000); in ciliated vertebrate cells, between ciliary and periciliary membranes (Hu et al., 2010); in epithelial cells, between apical and basolateral membranes (van Meer and Simons, 1986); in neurons, between axon and soma (Kobayashi et al., 1992; Winckler et al., 1999; Nakada et al., 2003); and in spermatozoa, at the level of the annulus (Myles et al., 1984; Nehme et al., 1993). The existence of membrane scaffolds that prevent free protein diffusion has also been described in bacteria (Baldi and Barral, 2012; Schlimpert et al., 2012). In plants, we have shown the existence of a strict membrane fence in the root endodermis, where a median domain splits the cell in two lateral halves occupied by different sets of proteins (Alassimone et al., 2010). The situation in the plant endodermis is analogous to the separation of animal epithelia into apical and basolateral domains; indeed, a parallel between epithelia and endodermal cells has been drawn, despite the different origin of multicellularity in plants and animals (Grebe, 2011).The protein complexes responsible for the formation of membrane fences have been identified. Septins are a family of proteins able to oligomerize and form filaments (Saarikangas and Barral, 2011); their role in the formation of membrane fences has been demonstrated in several organisms and cellular situations, including the yeast bud neck (Barral et al., 2000; Takizawa et al., 2000), animal cilia (Hu et al., 2010), and mammalian spermatozoa (Ihara et al., 2005; Kissel et al., 2005; Kwitny et al., 2010). At the axonal initial segment of neurons, AnkyrinG is necessary to establish and maintain a membrane scaffold where different membrane proteins are immobilized and stabilized (Hedstrom et al., 2008; Sobotzik et al., 2009). In Caulobacter crescentus, the stalk protein Stp forms a complex that prevents diffusion between the cell body and stalk and between stalk compartments. Claudins and occludin are the main components of epithelial tight junctions (Furuse et al., 1993, 1998). Occludins are four-membrane-span proteins and belong to the MARVEL protein family (Sánchez-Pulido et al., 2002), as do Tricellulin and MARVELD3, which are also tight junction-associated proteins (Furuse et al., 1993; Ikenouchi et al., 2005; Steed et al., 2009).In Arabidopsis (Arabidopsis thaliana), our group identified a family of proteins that form a membrane fence in the endodermis (Roppolo et al., 2011). These CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASP1 to CASP5) are four-transmembrane proteins that form a median domain referred to as the Casparian strip membrane domain (CSD). CASPs are initially targeted to the whole plasma membrane, then they are quickly removed from lateral plasma membranes and remain localized exclusively at the CSD; there, they show an extremely low turnover, although they are eventually removed (Roppolo et al., 2011). The membrane proteins NOD26-LIKE INTRINSIC PROTEIN5;1 and BORON TRANSPORTER1 are restricted from diffusing through the CSD and remain polarly localized in the outer and inner lateral membranes, respectively; a fluorescent lipophilic molecule, when integrated in the outer endodermal membrane, was blocked at the level of the CSD and could not diffuse into the inner membrane (Roppolo et al., 2011). Besides making a plasma membrane diffusion barrier, CASPs have an important role in directing the modification of the cell wall juxtaposing their membrane domain: by interacting with secreted peroxidases, they mediate the deposition of lignin and the building up of the Casparian strips (Roppolo et al., 2011; Naseer et al., 2012; Lee et al., 2013). The two CASP activities, making membrane scaffolds and directing a modification of the cell wall, can be uncoupled: indeed, (1) formation of the CASP domain is independent from the deposition of lignin, and (2) interaction between CASPs and peroxidases can take place outside the CSD when CASPs are ectopically expressed (Lee et al., 2013).As CASPs are currently the only known proteins forming membrane fences in plants and because of their essential role in directing a local cell wall modification, we were interested in characterizing the repertoire of a large number of CASP-like (CASPL) proteins in the plant kingdom. Our aim was to provide the molecular basis for the discovery of additional membrane domains in plants and for the identification of proteins involved in local cell wall modifications. We extended our phylogenetic analysis outside of the plant kingdom and found conservation between CASPLs and the MARVEL protein family. Conserved residues are located in transmembrane domains, and we provide evidence suggesting that these domains are involved in CASP localization. We explored the potential use of the CASPL module in plants by investigating CASPL expression patterns and their ability to form membrane domains in the endodermis. Moreover, we related the appearance of the Casparian strips in the plant kingdom to the emergence of a CASP-specific signature that was not found in the genomes of plants lacking Casparian strips.  相似文献   
49.
Salicylic acid (SA) is reported to protect plants from heat shock (HS), but insufficient is known about its role in thermotolerance or how this relates to SA signaling in pathogen resistance. We tested thermotolerance and expression of pathogenesis-related (PR) and HS proteins (HSPs) in Arabidopsis thaliana genotypes with modified SA signaling: plants with the SA hydroxylase NahG transgene, the nonexpresser of PR proteins (npr1) mutant, and the constitutive expressers of PR proteins (cpr1 and cpr5) mutants. At all growth stages from seeds to 3-week-old plants, we found evidence for SA-dependent signaling in basal thermotolerance (i.e. tolerance of HS without prior heat acclimation). Endogenous SA correlated with basal thermotolerance, with the SA-deficient NahG and SA-accumulating cpr5 genotypes having lowest and highest thermotolerance, respectively. SA promoted thermotolerance during the HS itself and subsequent recovery. Recovery from HS apparently involved an NPR1-dependent pathway but thermotolerance during HS did not. SA reduced electrolyte leakage, indicating that it induced membrane thermoprotection. PR-1 and Hsp17.6 were induced by SA or HS, indicating common factors in pathogen and HS responses. SA-induced Hsp17.6 expression had a different dose-response to PR-1 expression. HS-induced Hsp17.6 protein appeared more slowly in NahG. However, SA only partially induced HSPs. Hsp17.6 induction by HS was more substantial than by SA, and we found no SA effect on Hsp101 expression. All genotypes, including NahG and npr1, were capable of expression of HSPs and acquisition of HS tolerance by prior heat acclimation. Although SA promotes basal thermotolerance, it is not essential for acquired thermotolerance.  相似文献   
50.
Four small molecular receptors of vancomycin have been designed to make part of a novel biosensor device based on the FTIR-ATR detection: N-Boc (2a) or N-Ac (2b)-6-aminocaproyl-D-Ala-D-Ala and N-Boc (3a) or N-Ac (3b)-6-aminocaproyl-D-Ala-d-Ser. Using an original microbiological approach to assess the competition of compounds with the natural target of vancomycin in bacteria, EC(50) values of 6.3-8.0 x 10(-5)M (2a-b) and 7.1-9.3 x 10(-4)M (3a-b) were determined. Vancomycin:2b complex was characterized by MS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号