首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3942篇
  免费   342篇
  国内免费   2篇
  4286篇
  2023年   15篇
  2022年   34篇
  2021年   80篇
  2020年   45篇
  2019年   46篇
  2018年   57篇
  2017年   58篇
  2016年   93篇
  2015年   216篇
  2014年   177篇
  2013年   237篇
  2012年   355篇
  2011年   289篇
  2010年   193篇
  2009年   125篇
  2008年   212篇
  2007年   243篇
  2006年   197篇
  2005年   202篇
  2004年   217篇
  2003年   191篇
  2002年   179篇
  2001年   30篇
  2000年   23篇
  1999年   29篇
  1998年   82篇
  1997年   29篇
  1996年   40篇
  1995年   32篇
  1994年   39篇
  1993年   28篇
  1992年   30篇
  1991年   22篇
  1990年   30篇
  1989年   34篇
  1988年   20篇
  1987年   18篇
  1986年   19篇
  1985年   23篇
  1984年   30篇
  1983年   29篇
  1982年   38篇
  1981年   26篇
  1980年   30篇
  1979年   21篇
  1978年   11篇
  1977年   21篇
  1976年   17篇
  1974年   12篇
  1973年   9篇
排序方式: 共有4286条查询结果,搜索用时 15 毫秒
171.
The galK gene, encoding galactokinase of the Leloir pathway, was insertionally inactivated in Streptococcus mutans UA159. The galK knockout strain displayed only marginal growth on galactose, but growth on glucose or lactose was not affected. In strain UA159, the sugar phosphotransferase system (PTS) for lactose and the PTS for galactose were induced by growth in lactose and galactose, although galactose PTS activity was very low, suggesting that S. mutans does not have a galactose-specific PTS and that the lactose PTS may transport galactose, albeit poorly. To determine if the galactose growth defect of the galK mutant could be overcome by enhancing lactose PTS activity, the gene encoding a putative repressor of the operon for lactose PTS and phospho-β-galactosidase, lacR, was insertionally inactivated. A galK and lacR mutant still could not grow on galactose, although the strain had constitutively elevated lactose PTS activity. The glucose PTS activity of lacR mutants grown in glucose was lower than in the wild-type strain, revealing an influence of LacR or the lactose PTS on the regulation of the glucose PTS. Mutation of the lacA gene of the tagatose pathway caused impaired growth in lactose and galactose, suggesting that galactose can only be efficiently utilized when both the Leloir and tagatose pathways are functional. A mutation of the permease in the multiple sugar metabolism operon did not affect growth on galactose. Thus, the galactose permease of S. mutans is not present in the gal, lac, or msm operons.  相似文献   
172.
Chlamydia trachomatis is an intracellular bacterial pathogen that primarily infects via mucosal surfaces. Using mice with a targeted disruption in IgA gene expression (IgA(-/-) mice), we have studied the contribution of IgA, the principal mucosal antibody isotype, in primary immune defenses against pulmonary C. trachomatis infection. Bacterial burden was comparable between IgA(-/-) and IgA(+/+) animals following C. trachomatis challenge. Serum and pulmonary anti-Chlamydia antibody levels were higher in IgA(-/-) animals, with the exception of IgA. Lung sections of challenged IgA(-/-) mice showed more extensive immunopathology than corresponding IgA(+/+) animals. Real-time PCR analysis demonstrated significantly greater IFN-gamma and TGF-beta mRNA expression in IgA(-/-) as compared to IgA(+/+) animals. Together, these results suggest that IgA may not be necessary for clearance of primary C. trachomatis infection. However, IgA(-/-) mice displayed exaggerated lung histopathology and altered cytokine production, indicating an important role for IgA in regulating C. trachomatis induced pulmonary inflammation and maintenance of mucosal homeostasis.  相似文献   
173.
174.
175.
Identifying novel allosteric inhibitors of G protein-coupled receptor kinases (GRKs) would be of considerable use in limiting both the extent of desensitization of GPCRs as well as downstream positive regulation through GRKs. Several peptides have previously been identified as inhibitors of specific GRKs, but to date there have been few comparisons of the selectivities of these materials on the seven GRKs, modifications to allow cell penetration, or off-target activities. The goal of this study was to determine if a panel of peptides mimicking domains on either GPCRs or GRKs would exhibit selective inhibition of GRKs 2, 5, 6 and 7 phosphorylation of rhodopsin. Peptides included sequences from GRK5; helices 3, 9, and 10 (α3, α9, and α10) in the RH domain, and the N-terminal peptide (N-Ter), as well as the intracellular loop 1 (iL1) of the β2-adrenergic receptor (β2AR), and the Gα transducin C-tail (TCT). While some selectivity for individual GRKs was found, overall selectivity was limited and often not reflective of structural predictions. Off-target effects were probed by determining peptide inhibition of adenylyl cyclase (AC) and PKA, and while peptides had no effect on AC activity, N-Ter, iL1, and α10 were potent inhibitors of PKA. To probe inhibition of GRK activity in intact cells, we synthesized TAT-tagged peptides, and found that TAT-α9-R169A and TAT–TCT inhibited isoproterenol-stimulated GRK phosphorylation of the β2AR; however, the TAT peptides also inhibited isoproterenol and forskolin stimulation of AC activity. Our findings demonstrate potent peptide inhibition of GRK activities in vitro, highlight the differences in the environments of biochemical and cell-based assays, and illustrate the care that must be exercised in interpreting results of either assay alone.  相似文献   
176.
The HLA class I sequences included in this compilation are taken from publications listed in the accompanying paper, Nomenclature for factors of the HLA system, 1990 (Bodmer et al. 1991) and Nomeclature for factors of the HLA system, 1989 (Bodmer et al. 1990). Where discrepancies have arisen between reported sequences the original authors have been contavted where possible, and necessary amendments to published sequences have been incorporated into this alignment. Future sequencing may identify errors in this list and we would welcome any evidence that helps to maintain the accuracy of this compilation. In the sequence alignments identify between residues is indicated by a hyphen (-). Unavailable sequence is indicated by a period (.). Gaps in the sequence are inserted to maintain the alignment between different alleles showing variation in amino acid number.  相似文献   
177.
Summary Annexin VI and actin were detected by immunoblot analysis in the enamel- and dentin-related portions of dental tissues. Annexin VI was found mainly in the particulate fraction whereas actin was detected in both the soluble and particulate fractions. By immunoelectron microscopy, annexin VI antibodies conjugated with colloidal gold were seen to label the mitochondria, the cytosol and the nucleus of secretory ameloblasts and odontoblasts of rat incisor. In the processes of these cell, the plasmalemmal undercoat was labeled. Antiactin antibodies labeled the desmosome-like junctions, the cytosol, and the mitochondria of the cell bodies. Extensive labeling was seen at the periphery of the Tomes' processes and odontoblast processes. These results suggest that annexin VI may play a role in Ca2+-regulation in the cell bodies, especially as a calcium receptor protein in the mitochondria. Moreover, annexin VI and actin seem to be co-distributed in secretory processes. Thus, these proteins might be both involved in exocytotic and endocytotic events.  相似文献   
178.
Summary The complete 129-amino-acid sequences of two rainbow trout lysozymes (I and II) isolated from kidney were established using protein chemistry microtechniques. The two sequences differ only at position 86, I having aspartic acid and II having alanine. A cDNA clone coding for rainbow trout lysozyme was isolated from a cDNA library made from liver mRNA. Sequencing of the cloned cDNA insert, which was 1 kb in length, revealed a 432-bp open reading frame encoding an amino-terminal peptide of 15 amino acids and a mature enzyme of 129 amino acids identical in sequence to II. Forms I and II from kidney and liver were also analyzed using enzymatic amplification via PCR and direct sequencing; both organs contain mRNA encoding the two lysozymes. Evolutionary trees relating DNA sequences coding for lysozymesc and α-lactalbumins provide evidence that the gene duplication giving rise to conventional vertebrate lysozymesc and to lactalbumin preceded the divergence of fishes and tetrapods about 400 Myr ago. Evolutionary analysis also suggests that amino acid replacements may have accumulated more slowly on the lineage leading to fish lysozyme than on those leading to mammal and bird lysozymes.  相似文献   
179.

Objective

To analyze in obese women the acute effects of the breath stacking technique on thoraco-abdominal expansion.

Design and Methods

Nineteen obese women (BMI≥30 kg/m2) were evaluated by anthropometry, spirometry and maximal respiratory muscle pressures and successively analyzed by Opto-Electronic Plethysmography and a Wright respirometer during quiet breathing and breath stacking maneuvers and compared with a group of 15 normal-weighted healthy women. The acute effects of the maneuvers were assessed in terms of total and compartmental chest wall volumes at baseline, end of the breath stacking maneuver and after the maneuver. Obese subjects were successively classified into two groups, accordingly to the response during the maneuver, group 1 = prevalent rib cage or group 2 = abdominal expansion.

Results

Age was significantly lower in group 1 than group 2. When considering the two obese groups, FEV1 was lower and minute ventilation was higher only in group 2 compared to controls group. During breath stacking, inspiratory capacity was significant differences in obese subjects with a smaller expansion of the pulmonary rib cage and a greater expansion of the abdomen compared to controls and also between groups 1 and 2. A significant inverse linear relationship was found between age and inspiratory capacity of the pulmonary rib cage but not of the abdomen.

Conclusions

In obese women the maximal expansion of the rib cage and abdomen is influenced by age and breath stacking maneuver could be a possible therapy for preventing respiratory complications.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号