首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3989篇
  免费   349篇
  国内免费   2篇
  4340篇
  2023年   15篇
  2022年   34篇
  2021年   81篇
  2020年   45篇
  2019年   46篇
  2018年   57篇
  2017年   58篇
  2016年   95篇
  2015年   217篇
  2014年   179篇
  2013年   240篇
  2012年   357篇
  2011年   291篇
  2010年   194篇
  2009年   126篇
  2008年   214篇
  2007年   244篇
  2006年   201篇
  2005年   203篇
  2004年   218篇
  2003年   192篇
  2002年   179篇
  2001年   32篇
  2000年   26篇
  1999年   30篇
  1998年   82篇
  1997年   32篇
  1996年   42篇
  1995年   32篇
  1994年   40篇
  1993年   28篇
  1992年   31篇
  1991年   22篇
  1990年   30篇
  1989年   34篇
  1988年   23篇
  1987年   23篇
  1986年   21篇
  1985年   23篇
  1984年   33篇
  1983年   30篇
  1982年   38篇
  1981年   26篇
  1980年   31篇
  1979年   22篇
  1978年   11篇
  1977年   21篇
  1976年   17篇
  1974年   12篇
  1973年   9篇
排序方式: 共有4340条查询结果,搜索用时 15 毫秒
61.
In the thyroid, the transport of iodide from the extracellular space to the follicular lumen requires two steps: the transport in the cell at the basal side and in the lumen at the apical side. The first step is mediated by the Na(+)/I(-) symporter (NIS). In most reviews and textbooks, the second step is presented as mediated by pendrin. In this review, we analyze this assumption. There are several arguments supporting the concept that indeed pendrin plays an important role in thyroid physiology. However, biochemical, clinical and histological data on the thyroid of a patient with Pendred syndrome do not suggest an essential role in iodide transport, which is corroborated by the lack of a thyroid phenotype in pendrin knockout mice. Experiments in vivo and in vitro on polarized and unpolarized cells show that iodide is transported transport of iodide at the apex of the thyroid cell. Moreover, ectopic expression of pendrin in transfected non-thyroid cells is capable of mediating iodide efflux. It is concluded that pendrin may participate in the iodide efflux into thyroid lumen but not as the unique transporter. Moreover, another role of pendrin in mediating Cl(-)/HCO(3)(-) exchange and controlling luminal pH is suggested.  相似文献   
62.
Monoclonal antibody LB-2 to a surface antigen on human B cells, lymphoblast, monocytes and vascular endothelial cells largely inhibited adhesion among Epstein Barr virus-immortalized normal B cells (EBV-B) and concanavalin A-stimulated blood mononuclear cells (Con A-BMC) before and after phorbol ester treatment. The antibody inhibited to a lesser extent phorbol ester-induced aggregation of monocytes, U937 cells and fresh BMC and had virtually no inhibitory effect on the adhesion among enriched T cells and granulocytes. A surface glycoprotein band of 84 kDa was obtained from EBV-B cells by immunoprecipitation and gel electrophoresis. Immunological and biochemical studies clearly distinguished this molecule from gp90 and associated glycoproteins which also mediate leukocyte adhesion.  相似文献   
63.
A novel class of 4-arylamino-phthalazin-1-yl-benzamides is described as inhibitors of vascular endothelial growth factor receptor II (VEGFR-2). Several compounds display potent VEGFR-2 inhibitory activity with an IC50 as low as 0.078 microM in an HTRF enzymatic assay. These compounds are relatively selective against a small kinase panel.  相似文献   
64.
We developed a unified model of the GRK-mediated β2 adrenergic receptor (β2AR) regulation that simultaneously accounts for six different biochemical measurements of the system obtained over a wide range of agonist concentrations. Using a single deterministic model we accounted for (1) GRK phosphorylation in response to various full and partial agonists; (2) dephosphorylation of the GRK site on the β2AR; (3) β2AR internalization; (4) recycling of the β2AR post isoproterenol treatment; (5) β2AR desensitization; and (6) β2AR resensitization. Simulations of our model show that plasma membrane dephosphorylation and recycling of the phosphorylated receptor are necessary to adequately account for the measured dephosphorylation kinetics. We further used the model to predict the consequences of (1) modifying rates such as GRK phosphorylation of the receptor, arrestin binding and dissociation from the receptor, and receptor dephosphorylation that should reflect effects of knockdowns and overexpressions of these components; and (2) varying concentration and frequency of agonist stimulation “seen” by the β2AR to better mimic hormonal, neurophysiological and pharmacological stimulations of the β2AR. Exploring the consequences of rapid pulsatile agonist stimulation, we found that although resensitization was rapid, the β2AR system retained the memory of the previous stimuli and desensitized faster and much more strongly in response to subsequent stimuli. The latent memory that we predict is due to slower membrane dephosphorylation, which allows for progressive accumulation of phosphorylated receptor on the surface. This primes the receptor for faster arrestin binding on subsequent agonist activation leading to a greater extent of desensitization. In summary, the model is unique in accounting for the behavior of the β2AR system across multiple types of biochemical measurements using a single set of experimentally constrained parameters. It also provides insight into how the signaling machinery can retain memory of prior stimulation long after near complete resensitization has been achieved.  相似文献   
65.
Although sialic acid has long been recognized as the primary receptor determinant for attachment of influenza virus to host cells, the specific receptor molecules that mediate viral entry are not known for any cell type. For the infection of murine macrophages by influenza virus, our earlier study indicated involvement of a C-type lectin, the macrophage mannose receptor (MMR), in this process. Here, we have used direct binding techniques to confirm and characterize the interaction of influenza virus with the MMR and to seek additional macrophage surface molecules that may have potential as receptors for viral entry. We identified the macrophage galactose-type lectin (MGL) as a second macrophage membrane C-type lectin that binds influenza virus and is known to be endocytic. Binding of influenza virus to MMR and MGL occurred independently of sialic acid through Ca2+-dependent recognition of viral glycans by the carbohydrate recognition domains of the two lectins; influenza virus also bound to the sialic acid on the MMR. Multivalent ligands of the MMR and MGL inhibited influenza virus infection of macrophages in a manner that correlated with expression of these receptors on different macrophage populations. Influenza virus strain A/PR/8/34, which is poorly glycosylated and infects macrophages poorly, was not recognized by the C-type lectin activity of either the MMR or the MGL. We conclude that lectin-mediated interactions of influenza virus with the MMR or the MGL are required for the endocytic uptake of the virus into macrophages, and these lectins can thus be considered secondary or coreceptors with sialic acid for infection of this cell type.Infection of host cells by influenza virus is initiated by attachment of virus to sialic acid residues on the host cell surface through the receptor-binding site at the distal tip of the viral hemagglutinin (HA) (43). After attachment, the virus is internalized by endocytosis, and acidification of the endosome triggers a conformational change in viral HA that results in fusion of the viral envelope and host cell membrane (34). At the cell surface, sialic acid residues are commonly found at the termini of oligosaccharide chains that are attached in O or N linkage to cell surface proteins; they are also an essential component of acidic glycosphingolipids (gangliosides) that are present in all mammalian cell membranes. Although the abundance of sialic acid on mammalian cells provides influenza virus with multiple potential receptors, virus attachment does not always lead to virus entry (5, 8, 46). Furthermore, sialic acid-independent infection of Madin-Darby canine kidney (MDCK) cells by influenza virus has been reported (35). The specific host cell molecules that serve as functional receptors (or coreceptors) for the infectious entry of influenza virus have yet to be defined.We have studied the infectious entry of influenza virus into macrophages (Mφ), which represents an early event in recognition of the virus by the innate immune system (23, 44). After intranasal infection of mice, influenza virus replicates productively in cells of the respiratory epithelium. Mφ are also infected and viral proteins are produced, but replication is abortive and no live progeny are released (32); infection of Mφ is thus a dead-end for the virus leading to a reduction in viral load. In addition, influenza virus infection of Mφ stimulates production and release of proinflammatory cytokines and alpha/beta interferon (28), which may assist in further limiting viral replication and spread within the respiratory tract. Depletion of airway Mφ from mice prior to intranasal influenza virus infection leads to increased virus titers in the lung, attesting to the important role of Mφ in early host defense against the virus (38, 44).We observed in a previous study (30) that influenza A virus strains differed in their ability to infect murine Mφ, strains carrying a more highly glycosylated hemagglutinin (HA) molecule being more efficient at infecting Mφ than less glycosylated strains, although binding of viruses to the Mφ cell surface was equivalent. Our investigation of this phenomenon indicated involvement of the Mφ mannose receptor MMR (CD206), a C-type lectin, in infectious viral entry (29, 30). The involvement of other receptors was not excluded, and our subsequent observation that influenza virus can infect the RAW 264.7 Mφ cell line, which does not express the MMR, indeed points to the existence of other routes of infectious entry of the virus into Mφ.In the present study we used direct binding methods to confirm and characterize the interaction of influenza virus with the MMR and to seek additional Mφ surface molecules that may have potential as receptors for viral entry. We identify the Mφ galactose-type lectin (MGL) as a second Mφ membrane C-type lectin that binds influenza virus and investigate its involvement in the infectious process.  相似文献   
66.
Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7‐18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7‐18NATE is specific for the Grb7‐SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7‐18NATE binds with micromolar binding affinity to Grb7‐SH2 domain (KD = 4–6 μm ) compared with 50–200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2‐(N‐Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7‐18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7‐18NATE binding to the Grb7‐SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
67.
Haemoglobin initiates free radical chemistry. In particular, the interactions of peroxides with the ferric (met) species of haemoglobin generate two strong oxidants: ferryl iron and a protein-bound free radical. We have studied the endogenous defences to this reactive chemistry in a rabbit model following 20% exchange transfusion with cell-free haemoglobin stabilized in tetrameric form [via cross-linking with bis-(3,5-dibromosalicyl)fumarate]. The transfusate contained 95% oxyhaemoglobin, 5% methaemoglobin and 25 microM free iron. EPR spectroscopy revealed that the free iron in the transfusate was rendered redox inactive by rapid binding to transferrin. Methaemoglobin was reduced to oxyhaemoglobin by a slower process (t(1/2) = 1 h). No globin-bound free radicals were detected in the plasma. These redox defences could be fully attributed to a novel multifunctional role of plasma ascorbate in removing key precursors of oxidative damage. Ascorbate is able to effectively reduce plasma methaemoglobin, ferryl haemoglobin and globin radicals. The ascorbyl free radicals formed are efficiently re-reduced by the erythrocyte membrane-bound reductase (which itself uses intra-erythrocyte ascorbate as an electron donor). As well as relating to the toxicity of haemoglobin-based oxygen carriers, these findings have implications for situations where haem proteins exist outside the protective cell environment, e.g. haemolytic anaemias, subarachnoid haemorrhage, rhabdomyolysis.  相似文献   
68.
The role of Abs in protection against respiratory infection with the intracellular bacterium Francisella tularensis is not clear. To investigate the ability of Abs to clear bacteria from the lungs and prevent systemic spread, immune serum was passively administered i.p. to naive mice before intranasal F. tularensis live vaccine strain infection. It was found that immune serum treatment provided 100% protection against lethal challenge while normal serum or Ig-depleted immune serum provided no protection. Protective efficacy was correlated with increased clearance of bacteria from the lung and required expression of FcgammaR on phagocytes, including macrophages and neutrophils. However, complement was not required for protection. In vitro experiments demonstrated that macrophages were more readily infected by Ab-opsonized bacteria but became highly efficient in killing upon activation by IFN-gamma. Consistent with this finding, in vivo Ab-mediated protection was found to be dependent upon IFN-gamma. SCID mice were not protected by passive Ab transfer, suggesting that T cells but not NK cells serve as the primary source for IFN-gamma. These data suggest that a critical interaction of humoral and cellular immune responses is necessary to provide sterilizing immunity against F. tularensis. Of considerable interest was the finding that serum Abs were capable of conferring protection against lethal respiratory tularemia when given 24-48 h postexposure. Thus, this study provides the first evidence for the therapeutic use of Abs in Francisella-infected individuals.  相似文献   
69.
70.
Both cytogenetically visible and cryptic deletions of the terminal region of chromosome 22q are associated with a clinical phenotype including mental retardation, delay in expressive speech development, hypotonia, normal to accelerated growth and minor facial dysmorphic features. The genes responsible for the development of the phenotype have not yet been identified, but a distal localization is probable, since the cytogenetically visible and the cryptic deletions show a similar pattern of symptoms. We report a 33-year-old woman with a submicroscopic 22q13 deletion, mild mental retardation, speech delay, autistic symptoms and mild facial dysmorphic features. The deletion was mapped by FISH using cosmid probes from terminal 22q13, and the size of the deletion was estimated to be 100 kb. Three genes are affected by the deletion in this patient. ACR and RABL2B are deleted and proSAP2 is disrupted. This observation, together with recently published data, supports the notion that proSAP2 is the most important contributor to the 22q13 deletion phenotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号