首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   57篇
  2023年   4篇
  2022年   12篇
  2021年   11篇
  2020年   5篇
  2019年   10篇
  2018年   11篇
  2017年   14篇
  2016年   9篇
  2015年   16篇
  2014年   12篇
  2013年   17篇
  2012年   14篇
  2011年   8篇
  2010年   9篇
  2009年   8篇
  2008年   11篇
  2007年   10篇
  2006年   12篇
  2005年   7篇
  2004年   14篇
  2003年   9篇
  2002年   11篇
  2001年   10篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1994年   5篇
  1993年   2篇
  1992年   6篇
  1991年   9篇
  1990年   7篇
  1989年   9篇
  1988年   3篇
  1987年   7篇
  1986年   7篇
  1985年   6篇
  1984年   2篇
  1981年   2篇
  1980年   3篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   7篇
  1969年   1篇
  1967年   1篇
  1964年   2篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
81.
The aim of this research was to explain the direct plant growth-promoting activity of Trichoderma harzianum strain T-22 (T22), hypothesizing the involvement of different classes of plant growth regulators. Seven days after the transfer to root-inducing medium, in vitro-cultured shoots of GiSeLa6? (Prunus cerasus  × P. canescens) were inoculated with T22. Root and shoot growth were significantly affected by T22 (+76 and +61%, respectively). Ten days after inoculation, the levels of indole-3-acetic acid (IAA), trans-zeatin riboside (t-ZR), dihydrozeatin riboside (DHZR), gibberellic acid (GA3) and abscisic acid (ABA) were analyzed by high performance liquid chromatography coupled with mass spectrometry. The results showed that after T22-inoculation, IAA and GA3 significantly increased in both leaves (+49 and +71%, respectively) and roots (+40 and +143%, respectively) whereas t-ZR decreased (−51% in leaves and −37% in roots). Changes in DHZR were observed in T22-inoculated roots (−32%) but not in leaves, whereas the levels of ABA did not differ between the two treatments. The extraction method allowed the simultaneous extraction of phytohormones. There is evidence that the change in phytohormone levels is one of the direct mechanism by which T22 promotes rooting and shoot growth, with notable advantages for rootstock production during nursery processes.  相似文献   
82.
Growing cells adopt common basic strategies to achieve optimal resource allocation under limited resource availability. Our current understanding of such “growth laws” neglects degradation, assuming that it occurs slowly compared to the cell cycle duration. Here we argue that this assumption cannot hold at slow growth, leading to important consequences. We propose a simple framework showing that at slow growth protein degradation is balanced by a fraction of “maintenance” ribosomes. Consequently, active ribosomes do not drop to zero at vanishing growth, but as growth rate diminishes, an increasing fraction of active ribosomes performs maintenance. Through a detailed analysis of compiled data, we show that the predictions of this model agree with data from E. coli and S. cerevisiae. Intriguingly, we also find that protein degradation increases at slow growth, which we interpret as a consequence of active waste management and/or recycling. Our results highlight protein turnover as an underrated factor for our understanding of growth laws across kingdoms.  相似文献   
83.
ABSTRACT

The Covid-19 outbreak put enormous stress on the health system worldwide, and objective data to handle the emergency are still needed. We aimed to objectively assess the consequence of severe symptoms of Covid-19 infection on sleep quality through wrist actigraphy monitoring of four patients during the sub-acute recovery stage of the disease. The sleep of those patients who had experienced the most severe respiratory symptoms and who had needed prolonged intensive care unit (ICU) stay showed lower Sleep Efficiency and Immobility Time and higher Fragmentation Index compared to those patients who had experienced only mild respiratory symptoms and not requiring ICU stay. Wrist actigraphy assessment provided important clinical information about the sleep and activity levels of Covid-19 patients during the post-acute rehabilitation management.  相似文献   
84.
The Ca2+ mobilization effect of inositol 1,4,5-trisphosphate, the second messenger generated via receptor-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate, is mediated by binding to intracellular receptors, which are expressed in high concentration in cerebellar Purkinje cells. Partially conflicting previous reports localized the receptor to various subcellular structures: elements of ER, both rough and smooth-surfaced, the nuclear envelope, and even the plasma membrane. We have now reinvestigated the problem quantitatively by using cryosections of rat cerebellar tissue immunolabeled with polyclonal monospecific antibodies against the inositol 1,4,5-trisphosphate receptor. By immunofluorescence the receptor was detected only in Purkinje cells, whereas the other cells of the cerebellar cortex remained negative. In immunogold-decorated ultrathin cryosections of the Purkinje cell body, the receptor was concentrated in cisternal stacks (piles of up to 12 parallel cisternae separated by regularly spaced bridges, located both in the deep cytoplasm and beneath the plasma membrane; average density, greater than 5 particles/micron of membrane profile); in cisternal singlets and doublets adjacent to the plasma membrane (average density, approximately 2.5 particles/micron); and in other apparently smooth-surfaced vesicular and tubular profiles. Additional smooth-surfaced elements were unlabeled. Perinuclear and rough-surfaced ER cisternae were labeled much less by themselves (approximately 0.5 particles/micron, two- to threefold the background), but were often in direct membrane continuity with heavily labeled, smooth-surfaced tubules and cisternal stacks. Finally, mitochondria, Golgi cisternae, multivesicular bodies, and the plasma membrane were unlabeled. In dendrites, approximately half of the nonmitochondrial, membrane-bound structures (cisternae, tubules, and vesicles), as well as small cisternal stacks, were labeled. Dendritic spines always contained immunolabeled cisternae and vesicles. The dendritic plasma membrane, of both shaft and spines, was consistently unlabeled. These results identify a large, smooth-surfaced ER subcompartment that appears equipped to play a key role in the control of Ca2+ homeostasis: in particular, in the generation of [Ca2+]i transients triggered by activation of specific receptors, such as the quisqualate-preferring trans(+/-)-1-amino-1,3-cyclopentamedicarboxylic acid glutamatergic receptors, which are largely expressed by Purkinje cells.  相似文献   
85.
Urinary bladder activity involves central and autonomic nervous systems and bladder wall. Studies on the pathogenesis of voiding disorders such as the neurogenic detrusor overactivity (NDO) due to suprasacral spinal cord lesions have emphasized the importance of an abnormal handling of the afferent signals from urothelium and lamina propria (LP). In the LP (and detrusor), three types of telocytes (TC) are present and form a 3D‐network. TC are stromal cells able to form the scaffold that contains and organizes the connective components, to serve as guide for tissue (re)‐modelling, to produce trophic and/or regulatory molecules, to share privileged contacts with the immune cells. Specimens of full thickness bladder wall from NDO patients were collected with the aim to investigate possible changes of the three TC types using histology, immunohistochemistry and transmission electron microscopy. The results show that NDO causes several morphological TC changes without cell loss or network interruption. With the exception of those underlying the urothelium, all the TC display signs of activation (increase in Caveolin1 and caveolae, αSMA and thin filaments, Calreticulin and amount of cisternae of the rough endoplasmic reticulum, CD34, euchromatic nuclei and large nucleoli). In all the specimens, a cell infiltrate, mainly consisting in plasma cells located in the vicinity or taking contacts with the TC, is present. In conclusion, our findings show that NDO causes significant changes of all the TC. Notably, these changes can be interpreted as TC adaptability to the pathological condition likely preserving each of their peculiar functions.  相似文献   
86.
87.
Saiki, Chikako, and Jacopo P. Mortola. Effect of2,4-dinitrophenol on the hypometabolic response to hypoxia of conscious adult rats. J. Appl. Physiol. 83(2):537-542, 1997.During acute hypoxia, a hypometabolic response iscommonly observed in many newborn and adult mammalian species. Wehypothesized that, if hypoxic hypometabolism were entirely a regulatedresponse with no limitation in O2availability, pharmacological uncoupling of the oxidativephosphorylation should raise O2consumption(O2) bysimilar amounts in hypoxia and normoxia. Metabolic, ventilatory, andcardiovascular measurements were collected from conscious rats in airand in hypoxia, both before and after intravenous injection of themitochondrial uncoupler 2,4-dinitrophenol (DNP). In hypoxia (10%O2 breathing, 60% arterialO2 saturation),O2, as measured by anopen-flow technique, was less than in normoxia (~80%). SuccessiveDNP injections (6 mg/kg, 4 times) progressively increasedO2 in both normoxia andhypoxia by similar amounts. Body temperature slightly increased innormoxia, whereas it did not change in hypoxia. The DNP-stimulatedO2 during hypoxia couldeven exceed the control normoxic value. A single DNP injection (17 mg/kg iv) had a similar metabolic effect; it also resulted inhypotension and a drop in systemic vascular resistance. We concludethat pharmacological stimulation ofO2 counteracts theO2 drop determined byhypoxia and stimulates O2not dissimilarly from normoxia. Hypoxic hypometabolism is likely toreflect a regulated process of depression of thermogenesis, with nolimitation in cellular O2availability.

  相似文献   
88.
89.
In a search for the non-muscle equivalent of calsequestrin (the low-affinity high-capacity Ca2(+)-binding protein responsible for Ca2+ storage within the terminal cisternae of the sarcoplasmic reticulum), acidic proteins were extracted from rat liver and brain microsomal preparations and purified by column chromatography. No calsequestrin was observed in these extracts, but the N-terminal amino acid sequence of the major Ca2(+)-binding protein of the liver microsomal fraction was determined and found to correspond to that of calreticulin. This protein was found to bind approx. 50 mol of Ca2+/mol of protein, with low affinity (average Kd approx. 1.0 mM). A monoclonal antibody, C6, raised against skeletal-muscle calsequestrin cross-reacted with calreticulin in SDS/PAGE immunoblots, but polyclonal antibodies reacted with native calreticulin only weakly, or not at all, after SDS denaturation. Immuno-gold decoration of liver ultrathin cryosections with affinity-purified antibodies against liver calreticulin revealed luminal labelling of vacuolar profiles indistinguishable from calciosomes, the subcellular structures previously identified by the use of anti-calsequestrin antibodies. We conclude that calreticulin is the Ca2(+)-binding protein segregated within the calciosome lumen, previously described as being calsequestrin-like. Because of its properties and intraluminal location, calreticulin might play a critical role in Ca2+ storage and release in non-muscle cells, similar to that played by calsequestrin in the muscle sarcoplasmic reticulum.  相似文献   
90.
The fluorescent indicator fura-2 has been applied to a variety of cell types in order to set up appropriate conditions for measurements of the cytosolic concentration of free ionized Ca2+ [( Ca2+]i) in both cell suspensions and single cells analyzed in a conventional fluorimeter or in a fluorescence microscope equipped for quantitative analyses (with or without computerized image analyses), respectively. When the usual procedure for fluorescence dye loading (i.e., incubation at 37 degrees C with fura-2 acetoxy-methyl ester) was used, cells often exhibited a nonhomogeneous distribution of the dye, with marked concentration in multiple small spots located preferentially in the perinuclear area. These spots (studied in detail in human skin fibroblasts), were much more frequent in attached than in suspended cells, and were due to the accumulation (most probably by endocytosis) of the dye within acidic organelles after hydrolysis by lysosomal enzyme(s). When loading with fura-2 was performed at low (15 degrees C) temperature, no spots appeared, and cells remained diffusely labeled even after subsequent incubation at 32-37 degrees C for up to 2 h. Homogeneous distribution of the dye is a prerequisite for appropriate [Ca2+]i measurement. In fact, comparison of the results obtained in human skin fibroblasts labeled at either 37 or 15 degrees C demonstrated in spotty cells a marked apparent blunting of Ca2+ transients evoked by application of bradykinin. Additional problems were encountered when using fura-2. Leakage of the dye from loaded cells to the extracellular medium markedly affected the measurements in cell suspensions. This phenomenon was found to depend on the cell type, and to markedly decrease when temperature was lowered, suggesting the involvement of a facilitated transport. Calibration of fluorescence signals in terms of absolute [Ca2+]i was complicated by the increased fluorescence of fura-2 in the intracellular environment. To solve this problem we propose an in situ calibration procedure based on measurements carried out on cells in which [Ca2+]i was massively lowered (by loading the probe in a Ca2+-free medium) or increased (by treatment with the Ca2+ ionophore ionomycin, applied in a medium containing 3 mM Ca2+). These results provide explanations and, at least partial, solutions to the major problems encountered when using fura-2, and should thus be of help in clarifying the proper usage of the dye in [Ca2+]i measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号