首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   34篇
  2024年   1篇
  2023年   4篇
  2022年   12篇
  2021年   11篇
  2020年   5篇
  2019年   10篇
  2018年   11篇
  2017年   14篇
  2016年   9篇
  2015年   16篇
  2014年   12篇
  2013年   17篇
  2012年   13篇
  2011年   7篇
  2010年   9篇
  2009年   8篇
  2008年   11篇
  2007年   10篇
  2006年   12篇
  2005年   7篇
  2004年   15篇
  2003年   5篇
  2002年   8篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1997年   4篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有255条查询结果,搜索用时 46 毫秒
91.
92.
Calcium dynamics into astrocytes influence the activity of nearby neuronal structures. However, because previous reports show that astrocytic calcium signals largely mirror neighboring neuronal activity, current information coding models neglect astrocytes. Using simultaneous two-photon calcium imaging of astrocytes and neurons in the hippocampus of mice navigating a virtual environment, we demonstrate that astrocytic calcium signals encode (i.e., statistically reflect) spatial information that could not be explained by visual cue information. Calcium events carrying spatial information occurred in topographically organized astrocytic subregions. Importantly, astrocytes encoded spatial information that was complementary and synergistic to that carried by neurons, improving spatial position decoding when astrocytic signals were considered alongside neuronal ones. These results suggest that the complementary place dependence of localized astrocytic calcium signals may regulate clusters of nearby synapses, enabling dynamic, context-dependent variations in population coding within brain circuits.

A combination of functional imaging of astrocytes and neurons in the mouse hippocampus with information theory analysis shows that calcium dynamics in topographically-organized subcellular regions of astrocytes encode information about an animal’s position that is complementary and synergistic to that encoded in the spike output of surrounding neurons.  相似文献   
93.
Objective:This study aimed at investigating the effectiveness of an 8-week training protocol, based on neuromuscular electrical stimulation of the quadriceps, which was superimposed onto voluntary exercise (NMES+), in comparison to a traditional heavy slow resistance training (HSRT), in individuals with patellar tendinopathy.Methods:Thirty-two physically active participants, aged: 33.6±10.2 years, were divided into two groups: NMES+ or HSRT. Maximal voluntary isometric contraction (MVIC) of knee extensor and flexor muscles, power during a countermovement jump (CMJ), and VISA-p questionnaire scores were recorded at the start(T0), 2-weeks(T1), 4-weeks(T2), 6-weeks(T3), 8-weeks(T4) and 4-months post-training (T5). Knee pain and rate of perceived exertion (RPE) were recorded at each training session with a 0-10 scale.Results:Knee pain was significantly lower in NMES+ compared to HSRT during all training sessions. No significant between-group differences were found for VISA-p scores and forces recorded during MVICs at T0,T1,T2,T3,T4 and T5. A significant increase of VISA-p and peak forces during MVIC was recorded across-time in both groups. No significant between-group or across-time differences were found for RPE and CMJ parameters.Conclusions:NMES+ and HSRT were equally effective in decreasing tendinopathy symptoms and increasing strength, with NMES+ having the advantage to be a pain-free resistance training modality.  相似文献   
94.
Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post‐Golgi secretory pathway. Using in situ subcellular live imaging, we show that post‐Golgi transport of RAB6+ vesicles occurs toward the minus ends of microtubules and depends on dynein. We demonstrate that the apical determinant Crumbs3 (CRB3) is also transported by dynein. Double knockout of RAB6A/A'' and RAB6B impairs apical localization of CRB3 and induces a retraction of aRG cell apical process, leading to delamination and ectopic division. These defects are phenocopied by knockout of the dynein activator LIS1. Overall, our results identify a RAB6‐dynein‐LIS1 complex for Golgi to apical surface transport in aRG cells, and highlights the role of this pathway in the maintenance of neuroepithelial integrity.  相似文献   
95.
96.
97.
Leptinotoxin-h (LPTx), a neurotoxin (otherwise designated beta-leptinotarsin-h) known to stimulate the release of neurotransmitters from synapses, was purified from the hemolymph of the potato beetle, Leptinotarsa haldemani, by a simplification of the procedure originally developed by Crosland et al. [Biochemistry 23, 734-741, (1984)]. Highly and partially purified preparations of the toxin were applied to guinea pig synaptosomes and neurosecretory (PC12) cells. When applied in a Ca2+-containing Ringer medium, at concentrations in the 10(-11) - 10(-10) M range, the toxin induced: (a) rapid depolarization of the plasma membrane, which was not inhibited by organic blockers of voltage-dependent Na+ and Ca2+ channels (tetrodotoxin or verapamil); (b) large 45Ca influx; and (c) increased free cytosolic Ca2+ concentration. These latter two effects were unaffected by verapamil. In Ca2+-free media the effects of the toxin were different in the two systems investigated. In synaptosomes, depolarization was still observed, even if the toxin concentrations needed were higher (approximately 10X) than those effective in the complete medium. In contrast, in PC12 cells no effect of the toxin on membrane potential was observed. Binding of LPTx to its cellular targets could not be investigated directly because the toxin was inactivated by the procedures used for its labeling. Indirect evidence suggested however that Ca2+ is necessary for toxin binding to PC12 cells. Interaction of LPTx with air/water interfaces, as well as with cholesterol/phospholipid mono- and bilayer membranes was investigated. The results indicate that the toxin has affinity for hydrophobic surfaces, but lacks the capacity to insert across membranes unless transpositive voltage is applied. Our results are inconsistent with the previous conclusion of Crosland et al. (1984), who suggested opening of the Ca2+ channel as the mechanism of action of LPTx. The effects of the toxin resemble those of alpha-latrotoxin (alpha-LTx) of the black widow spider venom, and therefore the two toxins might act by similar mechanisms. However, the sites recognized by the two toxins might be different, because LPTx does not inhibit alpha-LTx binding.  相似文献   
98.
Guinea pig brain cortex synaptosomes and neurosecretory PC12 cells were loaded with [3H]3,4-dihydroxyphenylethylamine ([3H]DA, [3H]dopamine) and then exposed to leptinotoxin-h (LPTx) (purified and partially purified preparations, obtained from the hemolymph of Leptinotarsa haldemani). In a Ca2+-containing Ringer medium the toxin induced prompt and massive release of the neurotransmitter. Half-maximal effects were obtained at concentrations estimated of approximately 3 X 10(-11) M for synaptosomes, and 1.5 X 10(-10) M for PC12 cells. Release responses in the two experimental systems investigated were dependent to different extents on the Ca2+ concentration in the medium. In synaptosomes clear, although slow, release of [3H]DA was elicited by the toxin even in Ca2+-free, EGTA-containing medium, provided that high (in the 10(-10) M range) concentrations were used; near-maximal responses were observed at 10(-5)M Ca2+. In contrast, the toxin-induced release from PC12 cells was appreciable only at 3 X 10(-5) M Ca2+, and was maximal at 2 X 10(-4) M and above. In both synaptosomes and PC12 cells Sr2+ and Ba2+ could substitute for Ca2+; Co2+ was inhibitory, whereas Mn2+ failed to modify the release induced by the toxin in Ca2+-containing medium. Organic blockers of the voltage-dependent Ca2+ channel (verapamil and nitrendipine) and calmodulin blocking drugs (trifluoperazine and calmidazolium) failed to inhibit the toxin-induced release of [3H]DA. LPTx induced profound morphological effects. Synaptosomes treated in the Ca2+-containing medium exhibited fusion of synaptic vesicles, formation of numerous infoldings and large cisternae, and alterations of mitochondria. In the Ca2+-free medium the effects were similar, except that their appearance was delayed, and mitochondria were well preserved. Swelling was observed in PC12 cells, accompanied by enlargement of the Golgi area, accumulation of multivesicular bodies, mitochondrial alterations, and decreased number of secretion granules (Ca2+-containing medium). Morphometric analyses revealed a good correlation between the decrease of both synaptic vesicles (synaptosomes) and neurosecretory granules (PC12 cells), and the release of [3H]DA measured biochemically. This is a good indication that the release effect of the toxin is due to stimulation of exocytosis. Taken as a whole, these results confirm the similarity of the effects of LPTx with alpha-latrotoxin of the black widow spider venom, mentioned in the companion article. However, differences in effect and target specificity suggest that the two toxins are specific to separate binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
99.
Summary The resting oxygen consumption and breathing pattern of nine newborn and adult species (ranging in body size from mouse to human) have been compared on the basis of data collected from the literature. Minute ventilation is similarly linked to at both ages, the percent of extracted as O2 about 2.2. Tidal volume/kg is an interspecies constant in newborns and adults, approximately 8 ml/kg. Breathing frequency decreases with the increase in size in a different way at the two ages: large species have newborns breathing at rates 2–3 times above the corresponding adults' values, while in the small species newborns and adults breathe at almost the same rate. Therefore the newborns of the smallest species have both and below the expected values, implying a greater inability to cope with the external demands than newborns of larger species. Several considerations indicate that in the smallest newborns the mechanical properties of the respiratory system could be a constraint to resting ventilations larger than observed. It is therefore possible that their low is the cause, and not the effect, of the relatively small .  相似文献   
100.
Novelli J  Ahmed S  Hodgkin J 《Genetics》2004,168(3):1259-1273
Zinc metalloproteases of the BMP-1/TOLLOID family (also known as astacins) are extracellular enzymes involved in important developmental processes in metazoans. We report the characterization of the Caenorhabditis elegans gene dpy-31, which encodes the first essential astacin metalloprotease identified in this organism. Loss-of-function mutations in dpy-31 result in cuticle defects, abnormal morphology, and embryonic lethality, indicating that dpy-31 is required for formation of the collagenous exoskeleton. DPY-31 is widely expressed in the hypodermal cells, which are responsible for cuticle secretion. We have investigated the dpy-31 function through reversion analysis. While complete reversion can be obtained only by intragenic suppressors, reversion of the Dpy-31 lethal phenotype also can be caused by dominant extragenic suppressors. Nine extragenic suppressors carry mutations in the uniquely essential collagen gene sqt-3, which we show is the same gene as rol-4. Most mutations exhibit the unusual property of exclusively dominant suppression and all affect the sequence of the SQT-3 collagen C terminus. This suggests that DPY-31 is responsible for C-terminal proteolytic processing of collagen trimers and is therefore a structural and functional homolog of vertebrate BMP-1. The results also demonstrate the critical importance of the collagen C-terminal sequence, which is highly conserved among all 49 members of the SQT-3 subfamily.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号