首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3007篇
  免费   302篇
  国内免费   1篇
  3310篇
  2022年   26篇
  2021年   34篇
  2019年   22篇
  2018年   25篇
  2017年   24篇
  2016年   46篇
  2015年   105篇
  2014年   118篇
  2013年   119篇
  2012年   155篇
  2011年   162篇
  2010年   97篇
  2009年   101篇
  2008年   104篇
  2007年   110篇
  2006年   91篇
  2005年   101篇
  2004年   93篇
  2003年   132篇
  2002年   89篇
  2001年   97篇
  2000年   93篇
  1999年   72篇
  1998年   47篇
  1997年   35篇
  1996年   32篇
  1995年   33篇
  1994年   29篇
  1993年   41篇
  1992年   64篇
  1991年   60篇
  1990年   58篇
  1989年   64篇
  1988年   44篇
  1987年   50篇
  1986年   47篇
  1985年   69篇
  1984年   33篇
  1983年   37篇
  1982年   27篇
  1981年   33篇
  1980年   21篇
  1979年   34篇
  1978年   30篇
  1977年   40篇
  1976年   22篇
  1974年   22篇
  1972年   24篇
  1969年   21篇
  1968年   20篇
排序方式: 共有3310条查询结果,搜索用时 0 毫秒
91.
Despite the growing concern about the importance of silicon (Si) in controlling ecological processes in aquatic ecosystems, little is known about its processing in riparian vegetation, especially compared to nitrogen (N) and phosphorus (P). We present experimental evidence that relative plant uptake of N and P compared to Si in riparian vegetation is dependent on mowing practices, water-logging and species composition. Results are obtained from a controlled and replicated mesocosm experiment, with a full-factorial design of soil water logging and mowing management. In our experiments, the Si excluding species Plantago lanceolata was dominant in the mown and non-waterlogged treatments, while Si accumulating meadow grasses and Phalaris arundinacea dominated the waterlogged treatments. Although species composition, management and soil moisture interacted strongly in their effect on relative Si:N and Si:P uptake ratios, the uptake of N to P remained virtually unchanged over the different treatments. Our study sheds new light on the impact of riparian wetland ecosystems on nutrient transport to rivers. It indicates that it is essential to include Si in future studies of the impact of riparian vegetation on nutrient transport, as these are often implemented as a measure to moderate excessive N and P inputs.  相似文献   
92.
The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical evolution than to the acquisition of DNA by horizontal transfer.  相似文献   
93.
The possible role of endogenous opioids in the pathophysiology of spinal cord injury was evaluated utilizing a variety of experimental models and species. In the cat, we have shown that β-endorphin-like immunoreactivity was increased in plasma following traumatic spinal injury; such injury was associated with a decrease in spinal cord blood flow (SCBF) which was reversed by the opiate receptor antagonist naloxone. Naloxone treatment also significantly improved functional neurological recovery after severe injury. Thyrotropin-releasing hormone (TRH), possibly through its “anti-endorphin” actions, was even more effective than naloxone in improving functional recovery in the cat. In a rat model, utilizing a similar trauma method, TRH proved superior to naloxone in improving SCBF after injury. In addition, naloxone at high doses attenuated the hindlimb paralysis produced by temporary aortic occlusion in the rabbit. The high doses of naloxone required to improve neurological function after spinal injury suggest that naloxone's actions, if opiate receptor mediated, may be mediated by non-μ receptors. Dynorphin, an endogenous opioid with a high affinity for the κ receptor, produced hindlimb paralysis following intrathecal administration in rats. Taken together, these findings suggest that endogenous opioids, possibly acting at κ receptors in the spinal cord, may serve as pathophysiological factors in spinal cord injury.  相似文献   
94.
Proper coordination between glycolysis and respiration is essential, yet the regulatory mechanisms involved in sensing respiratory chain defects and modifying mitochondrial functions accordingly are unclear. To investigate the nature of this regulation, we introduced respiratory bypass enzymes into cultured human (HEK293T) cells and studied mitochondrial responses to respiratory chain inhibition. In the absence of respiratory chain inhibitors, the expression of alternative respiratory enzymes did not detectably alter cell physiology or mitochondrial function. However, in permeabilized cells NDI1 (alternative NADH dehydrogenase) bypassed complex I inhibition, whereas alternative oxidase (AOX) bypassed complex III or IV inhibition. In contrast, in intact cells the effects of the AOX bypass were suppressed by growth on glucose, whereas those produced by NDI1 were unaffected. Moreover, NDI1 abolished the glucose suppression of AOX-driven respiration, implicating complex I as the target of this regulation. Rapid Complex I down-regulation was partly released upon prolonged respiratory inhibition, suggesting that it provides an “emergency shutdown” system to regulate metabolism in response to dysfunctions of the oxidative phosphorylation. This system was independent of HIF1, mitochondrial superoxide, or ATP synthase regulation. Our findings reveal a novel pathway for adaptation to mitochondrial dysfunction and could provide new opportunities for combatting diseases.  相似文献   
95.
96.
The endosomal LeNHX2 ion transporter exchanges H+ with K+ and, to lesser extent, Na+. Here, we investigated the response to NaCl supply and K+ deprivation in transgenic tomato (Solanum lycopersicum L.) overexpressing LeNHX2 and show that transformed tomato plants grew better in saline conditions than untransformed controls, whereas in the absence of K+ the opposite was found. Analysis of mineral composition showed a higher K+ content in roots, shoots and xylem sap of transgenic plants and no differences in Na+ content between transgenic and untransformed plants grown either in the presence or the absence of 120 mm NaCl. Transgenic plants showed higher Na+/H+ and, above all, K+/H+ transport activity in root intracellular membrane vesicles. Under K+ limiting conditions, transgenic plants enhanced root expression of the high‐affinity K+ uptake system HAK5 compared to untransformed controls. Furthermore, tomato overexpressing LeNHX2 showed twofold higher K+ depletion rates and half cytosolic K+ activity than untransformed controls. Under NaCl stress, transgenic plants showed higher uptake velocity for K+ and lower cytosolic K+ activity than untransformed plants. These results indicate the fundamental role of K+ homeostasis in the better performance of LeNHX2 overexpressing tomato under NaCl stress.  相似文献   
97.
The maturation sequences of thymocytes is known to some extent: A generative layer of subcapsular large lymphoblasts gives rise to a major population of small cortical thymocytes and a minor population of midsize medullary thymocytes. The relative contribution of these three populations to the peripheral T cell populations is not yet known. In this study, subcapsular lymphoblasts, cortical small cells, medullary cells, and thymic emigrant cells have all been analyzed by immunofluorescence for expression of the antigens H-2D, I-A, H-2K, and TL. H-2D is expressed brightly on all subcapsular large cells, dimly on cortical small cells, and brightly on all migrants, cortisone-resistant thymocytes (CRT), and peripheral T cells. I-A can be detected at low levels on 30 to 50% of cells in all the thymic subpopulations, and on 30 to 50% of migrants and peripheral T cells. Fifty to 80% of small cortical cells do not express detectable H-2K, but all the other subpopulations, both inside and outside the thymus, stain uniformly quite brightly. TL3 is expressed on 70 to 80% of subcapsular and cortical thymocytes, 30 to 40% of CRT, is undetectable on migrants but can be seen at low levels on 10 to 20% of spleen and lymph node T cells. The possibility that some or all of these antigens represent stable markers of separate lineages rather than unstable, stage-specific markers is discussed.  相似文献   
98.
The microvillous membrane of the human placental syncytiotrophoblast contains an amiloride-inhibitable, electroneutral, Na+/H+ antiporter. The kinetic characteristics of this antiporter have been investigated to determine its response to alterations in intracellular and extracellular H+ and Na+ concentrations. Antiporter activity was measured using a pH-sensitive fluorescent probe entrapped in placental microvillous vesicles. We report here on the kinetic characterization of the antiporter, a transporter which displays simple, saturable kinetics for the external site but complex kinetics at the internal site. Measurement of the external Na+ and H+ dependences demonstrated that Na+ and H+ compete for binding to a single external binding site which displays saturation kinetics. The external Km determined for Na+ was 8.2 +/- 4.0 mM, while the external pK was 7.29 +/- 0.02. The Vmax calculated from these experiments was 0.57 +/- 0.10 nequiv./s per mg membrane protein. By contrast, the internal dependences for both Na+ and H+ showed significant deviations from simple linear kinetics. Decreasing internal pH to 6.0 stimulated Na+/H+ exchange to a greater degree than predicted for a single-site saturable binding model, in a manner which suggested allosteric activation. At the other extreme, Na+/H+ exchange ceased above an internal pH of 7.1, despite the existence of an inwardly-directed Na+ gradient. Increasing intracellular Na+ caused inhibition of Na+/H+ exchange but the intracellular Na+ dependence showed that the effect is due to a mechanism more complex than simple, competitive inhibition between Na+ and H+. These results show that the microvillous Na+/H+ antiporter is insensitive to changes in extracellular Na+ and H+ concentrations in the physiological range. Changes in intracellular Na+ and H+ however are likely to cause marked changes in antiporter activity. These characteristics suggest that cellular Na+ and H+ concentrations are tightly controlled in the placental syncytiotrophoblast and that the Na+/H+ antiporter may play a significant role in their regulation.  相似文献   
99.
Novel l-valinate amide benzoxaboroles and analogues were designed and synthesized for a structure-activity-relationship (SAR) investigation to optimize the growth inhibitory activity against Trypanosoma congolense (T. congolense) and Trypanosoma vivax (T. vivax) parasites. The study identified 4-fluorobenzyl (1-hydroxy-7-methyl-1,3-dihydrobenzo[c][1,2]oxaborole-6-carbonyl)-l-valinate (5, AN11736), which showed IC50 values of 0.15?nM against T. congolense and 1.3?nM against T. vivax, and demonstrated 100% efficacy with a single dose of 10?mg/kg against both T. congolense and T. vivax in mouse models of infection (IP dosing) and in the target animal, cattle, dosed intramuscularly. AN11736 has been advanced to early development studies.  相似文献   
100.
Metastasis-associated protein 3 (MTA3) is a constituent of the Mi-2/nucleosome remodeling and deacetylase (NuRD) protein complex that regulates gene expression by altering chromatin structure and can facilitate cohesin loading onto DNA. The biological function of MTA3 within the NuRD complex is unknown. Herein, we show that MTA3 was expressed highly in granulosa cell nuclei of all ovarian follicle stages and at lower levels in corpora lutea. We tested the hypothesis that MTA3-NuRD complex function is required for granulosa cell proliferation. In the ovary, MTA3 interacted with NuRD proteins CHD4 and HDAC1 and the core cohesin complex protein RAD21. In cultured mouse primary granulosa cells, depletion of endogenous MTA3 using RNA interference slowed cell proliferation; this effect was rescued by coexpression of exogenous MTA3. Slowing of cell proliferation correlated with a significant decrease in cyclin B1 and cyclin B2 expression. Granulosa cell populations lacking MTA3 contained a significantly higher percentage of cells in G2/M phase and a lower percentage in S phase compared with control cells. Furthermore, MTA3 depletion slowed entry into M phase as indicated by reduced phosphorylation of histone H3 at serine 10. These findings provide the first evidence to date that MTA3 interacts with NuRD and cohesin complex proteins in the ovary in vivo and regulates G2/M progression in proliferating granulosa cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号