首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   28篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2017年   8篇
  2016年   8篇
  2015年   24篇
  2014年   22篇
  2013年   26篇
  2012年   26篇
  2011年   17篇
  2010年   11篇
  2009年   17篇
  2008年   17篇
  2007年   15篇
  2006年   22篇
  2005年   13篇
  2004年   12篇
  2003年   11篇
  2002年   10篇
  2001年   17篇
  2000年   22篇
  1999年   9篇
  1998年   15篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1989年   3篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1981年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1971年   3篇
  1967年   3篇
  1965年   2篇
  1957年   2篇
  1910年   2篇
  1906年   2篇
  1904年   2篇
  1901年   3篇
排序方式: 共有436条查询结果,搜索用时 31 毫秒
111.
112.
The Yersinia adhesin YadA is the prototype of a novel class of bacterial adhesins which form oligomeric lollipop-like structures and are anchored in the outer membrane by the C terminus. For YadA, six different regions (R) or domains (D) are predicted from the amino acid sequence: the N-terminal leader sequence, head-D, neck-D, stalk-D, linking-R, and a C-terminal transmembrane region consisting of four beta-strands. To identify structural and functional features of these domains, we performed in-frame deletion mutagenesis and constructed N-terminally tagged YadA variants. Diverse YadA variants were analyzed for outer membrane localization, surface exposure, oligomerization adhesion properties, and ability to protect against complement-mediated lysis. We demonstrated that (i) the C-terminal region (amino acids [aa] 353 to 422) is sufficient for outer membrane insertion and formation of trimers in the outer membrane; (ii) the head, neck, and stalk domains (aa 26 to 330) are surface exposed, forming a passenger domain; and (iii) the linking region (aa 331 to 369) is responsible for outer membrane translocation of the passenger domain. Thus, YadA meets all the criteria of an autotransporter. The same may be true for all other members of the YadA family, forming a subfamily of surface-attached oligomeric autotransporters. Moreover, in-frame truncation mutagenesis suggested that the head and neck domains together form the YadA-binding module which is located on the top of the stalk. However, the YadA-binding module did not confer serum resistance. Mutants lacking the head and neck domain were resistant to complement-mediated lysis. In-frame truncation of the stalk domain did not result in significant attenuation of the mutant in an orogastric mouse infection model.  相似文献   
113.
The Archaeon Methanosarcina mazei and related species are of great ecological importance as they are the only organisms fermenting acetate, methylamines and methanol to methane, carbon dioxide and ammonia (in case of methylamines). Since acetate is the precursor of 60% of the methane produced on earth these organisms contribute significantly to the production of this greenhouse gas, e.g. in rice paddies. The 4,096,345 base pairs circular chromosome of M. mazei is more than twice as large as the genomes of the methanogenic Archaea currently completely sequenced (Bult et al., 1996; Smith et al., 1997). 3,371 open reading frames (ORFs) were identified. Based on currently available sequence data 376 of these ORFs are Methanosarcina-specific and 1,043 ORFs find their closest homologue in the bacterial domain. 544 of these ORFs reach significant similarity values only in the bacterial domain. They include 56 of the 102 transposases, and proteins involved in gluconeogenesis, proline biosynthesis, transport processes, DNA-repair, environmental sensing, gene regulation, and stress response. Striking examples are the occurrence of the bacterial GroEL/GroES chaperone system and the presence of tetrahydrofolate-dependent enzymes. These findings might indicate that lateral gene transfer has played an important evolutionary role in forging the physiology of this metabolically versatile methanogen.  相似文献   
114.
Patients with Sjögren's syndrome (SS) have characteristic lymphocytic infiltrates of the salivary glands. To determine whether the B cells accumulating in the salivary glands of SS patients represent a distinct population and to delineate their potential immunopathologic impact, individual B cells obtained from the parotid gland and from the peripheral blood were analyzed for immunglobulin light chain gene rearrangements by PCR amplification of genomic DNA. The productive immunglobulin light chain repertoire in the parotid gland of the SS patient was found to be restricted, showing a preferential usage of particular variable lambda chain genes (Vλ2E) and variable kappa chain genes (VκA27). Moreover, clonally related VL chain rearrangements were identified; namely, VκA27–Jκ5 and VκA19–Jκ2 in the parotid gland, and Vλ1C–Jλ3 in the parotid gland and the peripheral blood. Vκ and Vλ rearrangements from the parotid gland exhibited a significantly elevated mutational frequency compared with those from the peripheral blood (P < 0.001). Mutational analysis revealed a pattern of somatic hypermutation similar to that found in normal donors, and a comparable impact of selection of mutated rearrangements in both the peripheral blood and the parotid gland. These data indicate that there is biased usage of VL chain genes caused by selection and clonal expansion of B cells expressing particular VL genes. In addition, the data document an accumulation of B cells bearing mutated VL gene rearrangements within the parotid gland of the SS patient. These results suggest a role of antigen-activated and selected B cells in the local autoimmune process in SS.  相似文献   
115.
We describe a novel immobilization technique to investigate interactions between immobilized gangliosides (GD3, GM1, and GM2) and their respective antibodies, antibody fragments, or binding partners using an optical biosensor. Immobilization was performed by direct injection onto a carboxymethyldextran sensor chip and did not require derivatization of the sensor surface or the ganglioside. The ganglioside appeared to bind to the sensor surface by hydrophobic interaction, leaving the carbohydrate epitope available for antibody or, in the case of GM1, cholera toxin binding. The carboxyl group of the dextran chains on the sensor surface did not appear to be involved in the immobilization as evidenced by equivalent levels of immobilization following conversion of the carboxyl groups into acyl amino esters, but rather the dextran layer provided a hydrophilic coverage of the sensor chip which was essential to prevent nonspecific binding. This technique gave better reactivity and specificity for anti- ganglioside monoclonal antibodies (anti-GD3: KM871, KM641, R24; and anti-GM2: KM966) than immobilization by hydrophobic interaction onto a gold sensor surface or photoactivated cross-linking onto carboxymethydextran. This rapid immobilization procedure has facilitated detailed kinetic analysis of ganglioside/antibody interactions, with the surface remaining viable for a large number of cycles (>125). Kinetic constants were determined from the biosensor data using linear regression, nonlinear least squares and equilibrium analysis. The values of kd, ka, and KAobtained by nonlinear analysis (KAKM871 = 1.05, KM641 = 1.66, R24 = 0.14, and KM966 = 0.65 x 10(7) M- 1) were essentially independent of concentration and showed good agreement with data obtained by other analytical methods.   相似文献   
116.
Jacobi  A.  Rossmann  R.  Böck  A. 《Archives of microbiology》1992,158(6):444-451
The hyp operon of Escherichia coli comprises several genes which are required for the synthesis of all three hydrogenase isoenzymes. Deletions were introduced into each of the hypA-E genes, transferred to the chromosome and the resulting mutants were analysed for hydrogenase 1, 2 and 3 activity. The products of three of the genes, hypB, hypD and hypE were found to be essential for the synthesis of all three hydrogenase isoenzymes. A defect in hypB, as previously observed, could be complemented by high nickel concentrations in the medium, whereas the effects of mutants in the other genes could not. Lesions in hypA prevented development of hydrogenase 3 activity, did not influence the level of hydrogenase 1 but led to a considerable increase in hydrogenase 2 activity although the amount of hydrogenase 2 protein was not drastically altered. Lesions in hypC, on the other hand, led to a reduction of hydrogenase 1 activity and abolished hydrogenase 3 activity. HYPA and HYPC, besides being required for hydrogenase 3 formation, therefore may have a function in modulating the activities of the three isoenzymes with respect to each other and adjusting their levels to the requirement imposed by the physiological situation. Mutations in all five hyp genes prevented the apparent processing of the large subunits of all three hydrogenase isoenzymes. It is concluded that the products of the hypA-E genes play a role in nickel incorporation into hydrogenase apoprotein and/or processing of the constituent subunits of this enzyme. The importance of their roles is also reflected in their phylogenetic conservation in distantly related organisms.  相似文献   
117.
EA Ryan  LF Mockros  AM Stern    L Lorand 《Biophysical journal》1999,77(5):2827-2836
We investigated the origins of greater clot rigidity associated with FXIIIa-dependent cross-linking. Fibrin clots were examined in which cross-linking was controlled through the use of two inhibitors: a highly specific active-center-directed synthetic inhibitor of FXIIIa, 1,3-dimethyl-4,5-diphenyl-2[2(oxopropyl)thio]imidazolium trifluoromethylsulfonate, and a patient-derived immunoglobulin directed mainly against the thrombin-activated catalytic A subunits of thrombin-activated FXIII. Cross-linked fibrin chains were identified and quantified by one- and two-dimensional gel electrophoresis and immunostaining with antibodies specific for the alpha- and gamma-chains of fibrin. Gamma-dimers, gamma-multimers, alpha(n)-polymers, and alpha(p)gamma(q)-hybrids were detected. The synthetic inhibitor was highly effective in preventing the production of all cross-linked species. In contrast, the autoimmune antibody of the patient caused primarily an inhibition of alpha-chain cross-linking. Clot rigidities (storage moduli, G') were measured with a cone and plate rheometer and correlated with the distributions of the various cross-linked species found in the clots. Our findings indicate that the FXIIIa-induced dimeric cross-linking of gamma-chains by itself is not sufficient to stiffen the fibrin networks. Instead, the augmentation of clot rigidity was more strongly correlated with the formation of gamma-multimers, alpha(n)-polymers, and alpha(p)gamma(q)-hybrid cross-links. A mechanism is proposed to explain how these cross-linked species may enhance clot rigidity.  相似文献   
118.
119.
120.
3T3-L1 adipocytes express the lipopolysaccharide (LPS) receptor and respond to direct stimulation with the antigen by increasing the expression of inflammatory mediators. Activation of this receptor by its ligand in the macrophage causes the activation and translocation of nuclear factor-kappaB (NF-kappaB) to the nucleus where it regulates the expression of proinflammatory cytokines and other target genes. We investigated whether LPS could stimulate NF-kappaB translocation in primary pig adipocytes and regulate the expression and secretion of TNF-alpha and IL-6. LPS clearly induced the nuclear translocation of NF-kappaB and also upregulated (P < 0.05) the mRNA expression and secretion of IL-6 into the culture medium. An induction of TNF-alpha expression by LPS was not detected, but with extended incubation (8 h), there was a modest increase (P < 0.09) in the media concentration of this cytokine. Inhibition of either ERK1/2, PKC, or the inhibitory G protein (Gi) with U-0126, bisindolylmaleimide HCl, and pertussis toxin, respectively, blocked (P < 0.05) the increase in IL-6 expression caused by LPS. Because LPS administration in vivo increases circulating concentrations of IFN-gamma, and because this cytokine also regulates multiple immune modulators in the adipocyte, we also determined whether IFN-gamma regulates cytokine expression in primary adipocytes. Although the expression of IL-6 and TNF-alpha was unresponsive to IFN-gamma, the expression of IL-15 was markedly upregulated (P < 0.01). Furthermore, the induction of IL-15 expression by IFN-gamma was blocked by inhibition of PKC. These data indicate that NF-kappaB is responsive to LPS in the adipocyte and also identify key mediators of LPS-induced IL-6 expression. In addition, we provide novel evidence that IFN-gamma targets the adipocyte to induce IL-15 expression, thus indicating a possible role for the adipocyte in the regulation of T-cell function and muscle metabolism during the innate immune response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号