首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6258篇
  免费   613篇
  国内免费   3篇
  2023年   57篇
  2022年   85篇
  2021年   214篇
  2020年   101篇
  2019年   160篇
  2018年   138篇
  2017年   135篇
  2016年   184篇
  2015年   313篇
  2014年   305篇
  2013年   397篇
  2012年   450篇
  2011年   390篇
  2010年   260篇
  2009年   251篇
  2008年   295篇
  2007年   316篇
  2006年   277篇
  2005年   246篇
  2004年   221篇
  2003年   221篇
  2002年   217篇
  2001年   73篇
  2000年   70篇
  1999年   90篇
  1998年   55篇
  1997年   44篇
  1996年   43篇
  1994年   37篇
  1993年   43篇
  1992年   58篇
  1991年   60篇
  1990年   45篇
  1989年   48篇
  1988年   50篇
  1987年   53篇
  1986年   42篇
  1985年   36篇
  1984年   53篇
  1982年   36篇
  1981年   28篇
  1979年   51篇
  1978年   35篇
  1977年   42篇
  1976年   46篇
  1975年   55篇
  1974年   38篇
  1973年   27篇
  1972年   37篇
  1968年   30篇
排序方式: 共有6874条查询结果,搜索用时 328 毫秒
971.
972.
973.
Skeletal muscle fibers are giant multinucleated cells wherein individual nuclei govern the protein synthesis in a finite volume of cytoplasm; this is termed the myonuclear domain (MND). The factors that control MND size remain to be defined. In the present study, we studied the contribution of the NAD+‐dependent deacetylase, sirtuin 1 (SIRT1), to the regulation of nuclear number and MND size. For this, we isolated myofibers from mice with tissue‐specific inactivation (mKO) or inducible overexpression (imOX) of SIRT1 and analyzed the 3D organisation of myonuclei. In imOX mice, the number of nuclei was increased whilst the average MND size was decreased as compared to littermate controls. Our findings were the opposite in mKO mice. Muscle stem cell (satellite cell) numbers were reduced in mKO muscles, a possible explanation for the lower density of myonuclei in these mice; however, no change was observed in imOX mice, suggesting that other factors might also be involved, such as the functional regulation of stem cells/muscle precursors. Interestingly, however, the changes in the MND volume did not impact the force‐generating capacity of muscle fibers. Taken together, our results demonstrate that SIRT1 is a key regulator of MND sizes, although the underlying molecular mechanisms and the cause‐effect relationship between MND and muscle function remain to be fully defined.  相似文献   
974.
Checks and Balances between Autophagy and Inflammasomes during Infection   总被引:1,自引:0,他引:1  
Autophagy and inflammasome complex assembly are physiological processes that control homeostasis, inflammation, and immunity. Autophagy is a ubiquitous pathway that degrades cytosolic macromolecules or organelles, as well as intracellular pathogens. Inflammasomes are multi-protein complexes that assemble in the cytosol of cells upon detection of pathogen- or danger-associated molecular patterns. A critical outcome of inflammasome assembly is the activation of the cysteine protease caspase-1, which activates the pro-inflammatory cytokine precursors pro-IL-1β and pro-IL-18. Studies on chronic inflammatory diseases, heart diseases, Alzheimer's disease, and multiple sclerosis revealed that autophagy and inflammasomes intersect and regulate each other. In the context of infectious diseases, however, less is known about the interplay between autophagy and inflammasome assembly, although it is becoming evident that pathogens have evolved multiple strategies to inhibit and/or subvert these pathways and to take advantage of their intricate crosstalk. An improved appreciation of these pathways and their subversion by diverse pathogens is expected to help in the design of anti-infective therapeutic interventions.  相似文献   
975.
Sixty-four and fifty-six road dust samples were collected over two seasons from various locations throughout the island of Trinidad and analyzed for the 16 priority PAHs. Total PAH concentrations ranged from 21 ng g?1 to 4723 ng g?1 (d.w.) for the rainy season and 36 ng g?1 to 2428 ng g?1 (d.w.) for the dry season. The Σ4–6 ring PAHs accounted for 88% and 63% of the 16 PAHs in road dust samples for the rainy and dry seasons, respectively. PAH diagnostic ratios, principal component analysis, and cluster analysis revealed both pyrogenic and petrogenic sources in road dust for the two seasons, with major contributions from vehicular emissions. Contributions from incomplete combustion and petroleum sources were also identified. The estimated Incremental Lifetime Cancer Risk (ILCR) associated with exposure to road dust PAHs in Trinidad for the rainy and dry seasons indicated no potential risk for both children and adults, as denoted by ILCR values lower than 10?6.  相似文献   
976.
In part, the enemy release hypothesis of plant invasion posits that generalist herbivores in the non-native ranges of invasive plants will prefer native plants to exotic invaders. However, the extent to which this occurs in natural communities is unclear. Here, I examined the foraging preferences of an important guild of generalist herbivores—granivorous rodents—with respect to seeds from a suite of native and invasive Bromus (“brome”) species at five study sites distributed across?≈?80,000 km2 of the Great Basin Desert, USA. By examining only congeners, I accounted for a potentially large source of interspecific variation (phylogenetic relatedness). In general, granivorous rodents removed seeds from native bromes at a 23% higher rate than seeds from invasive bromes, suggesting a preference for native species. This preference was not entirely explained by seed size, and patterns of seed removal were consistent across study sites. These findings suggest that invasive bromes in the Great Basin might experience less rodent granivory than native congeners, which is consistent with a key prediction derived from the enemy release hypothesis.  相似文献   
977.
Previous work in Saccharomyces cerevisiae identified three residues located in close proximity to each other on the side of the nucleosome whose integrity is required for proper association of the Spt16 component of the FACT complex across transcribed genes. In an effort to gain further insights into the parameters that control Spt16 interactions with genes in vivo, we tested the effects of additional histone mutants on Spt16 occupancy across two constitutively transcribed genes. These studies revealed that mutations in several charged residues in the vicinity of the three residues originally identified as important for Spt16-gene interactions also significantly perturb normal association of Spt16 across genes. Based on these and our previous findings, we propose that the charge landscape across the region encompassed by these residues, which we refer to as the Influences Spt16-Gene Interactions or ISGI region, is an important contributor to proper Spt16-gene interactions in vivo.  相似文献   
978.
Cerebral fungal infections represent an important public health concern, where a key element of pathophysiology is the ability of the fungi to cross the blood-brain barrier (BBB). Yet the mechanism used by micro-organisms to cross such a barrier and invade the brain parenchyma remains unclear. This study investigated the effects of gliotoxin (GTX), a mycotoxin secreted by Aspergillus fumigatus, on the BBB using brain microvascular endothelial cells (BMECs) derived from induced pluripotent stem cells (iPSCs). We observed that both acute (2 h) and prolonged (24 h) exposure to GTX at the level of 1 μM or higher compromised BMECs monolayer integrity. Notably, acute exposure was sufficient to disrupt the barrier function in iPSC-derived BMECs, resulting in decreased transendothelial electrical resistance (TEER) and increased fluorescein permeability. Further, our data suggest that such disruption occurred without affecting tight junction complexes, via alteration of cell-matrix interactions, alterations in F-actin distribution, through a protein kinase C-independent signaling. In addition to its effect on the barrier function, we have observed a low permeability of GTX across the BBB. This fact can be partially explained by possible interactions of GTX with membrane proteins. Taken together, this study suggests that GTX may contribute in cerebral invasion processes of Aspergillus fumigatus by altering the blood-brain barrier integrity without disrupting tight junction complexes.  相似文献   
979.
980.
Mechanical characteristics of hydrogen stored single walled carbon nanotube (SWCNT) in proton exchange membrane fuel cell (PEMFC) operating conditions are analysed in this work using molecular dynamics simulation method. The investigation of mechanical characteristics of hydrogen stored SWCNT is critical in determining the lifetime and stability of SWCNT-based membranes used in PEMFC. The study provides a comprehensive analysis on the effects of geometry, vacancy defects and PEMFC operating temperature on the mechanical properties of hydrogen stored SWCNT. The findings show that the mechanical strength of the hydrogen stored SWCNT can be enhanced by deploying a bigger armchair SWCNT. Furthermore, increase in operating temperature of PEMFC reduces the mechanical resistance of hydrogen stored SWCNT, which however can be overcome by suitably introducing vacancy defects in the SWCNT geometry. This has provided potential way of increasing the hydrogen storage capacity of SWCNT which is very useful for onboard application of PEMFC. It is anticipated that the findings obtained from this paper will have a paramount importance in the field of hydrogen energy fuel cell technology and further compliment the potential applications of SWCNTs as promising candidates for applications in fuel cells and energy storage devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号