首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6755篇
  免费   801篇
  国内免费   5篇
  2021年   132篇
  2020年   62篇
  2019年   74篇
  2018年   89篇
  2017年   73篇
  2016年   136篇
  2015年   191篇
  2014年   222篇
  2013年   296篇
  2012年   314篇
  2011年   362篇
  2010年   224篇
  2009年   178篇
  2008年   263篇
  2007年   294篇
  2006年   296篇
  2005年   237篇
  2004年   245篇
  2003年   211篇
  2002年   213篇
  2001年   187篇
  2000年   207篇
  1999年   183篇
  1998年   89篇
  1997年   88篇
  1996年   89篇
  1995年   85篇
  1994年   68篇
  1993年   80篇
  1992年   133篇
  1991年   116篇
  1990年   122篇
  1989年   113篇
  1988年   117篇
  1987年   99篇
  1986年   103篇
  1985年   92篇
  1984年   89篇
  1983年   67篇
  1982年   80篇
  1981年   51篇
  1979年   77篇
  1978年   61篇
  1977年   69篇
  1976年   57篇
  1975年   84篇
  1974年   62篇
  1973年   61篇
  1972年   57篇
  1971年   57篇
排序方式: 共有7561条查询结果,搜索用时 15 毫秒
901.
Isothermal titration calorimetry (ITC) is a fast and robust method to determine the energetics of association reactions in solution. The changes in enthalpy, entropy and heat capacity that accompany binding provide unique insights into the balance of forces driving association of molecular entities. ITC is used nowadays on a day-to-day basis in hundreds of laboratories. The method aids projects both in basic and practice-oriented research ranging from medicine and biochemistry to physical chemistry and material sciences. Not surprisingly, the range of studies utilizing ITC data is steadily expanding. In this review, we discuss selected results and ideas that have accumulated in the course of the year 2006, the focus being on biologically relevant systems. Theoretical developments, novel applications and studies that provide a deeper level of understanding of the energetic principles of biological function are primarily considered. Following the appearance of a new generation of titration calorimeters, recent papers provide instructive examples of the synergy between energetic and structural approaches in biomedical and biotechnological research.  相似文献   
902.
The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins.  相似文献   
903.
This study presents the application of the porous poly(D,L-lactic-co-glycolic acid) (PLGA) sponges fabricated from an organic solvent free supercritical gas foaming technique. Two formulations of PLGA sponges with different co-polymer compositions (85:15 and 50:50) were fabricated as novel scaffolds to guide human hepatoma cell line, Hep3B cell growth in vitro. The PLGA sponges showed desirable biodegradability and exhibited uniform pore size distribution with moderate interconnectivity. It was observed in this study that cells cultured on PLGA sponges showed lower proliferation rate as compared to the control during 14 days of culture as measured by using total DNA and methylthiazol tetrazolium (MTT) assays. However, the cells cultured on the sponges tended to aggregate to form cell islets which were able to express better hepatic functions. The enzyme-linked immunosorbent assay (ELISA) results showed that the cell-sponge constructs secreted 1.5-3.0 times more albumin than the control when normalized to cellular content. In a similar fashion, its detoxification ability was also predominantly higher than that of the control as indicated by the ethoxyresorufin-O-deethylase (EROD) results. By comparing the cells growing on the two formulations of PLGA sponges, it was found that the PLGA 85:15 sponge exhibited better conductive and desirable environment for hep3B cells as justified by better cell infiltration, higher proliferation and hepatic function than the PLGA 50:50 sponge.  相似文献   
904.
905.
RecG and RuvAB are proposed to act at stalled DNA replication forks to facilitate replication restart. To define the roles of these proteins in fork regression, we used a combination of assays to determine whether RecG, RuvAB or both are capable of acting at a stalled fork. The results show that RecG binds to the C-terminus of single-stranded DNA binding protein (SSB) forming a stoichiometric complex of 2 RecG monomers per SSB tetramer. This binding occurs in solution and to SSB protein bound to single stranded DNA (ssDNA). The result of this binding is stabilization of the interaction of RecG with ssDNA. In contrast, RuvAB does not bind to SSB. Side-by-side analysis of the catalytic efficiency of the ATPase activity of each enzyme revealed that (−)scDNA and ssDNA are potent stimulators of the ATPase activity of RecG but not for RuvAB, whereas relaxed circular DNA is a poor cofactor for RecG but an excellent one for RuvAB. Collectively, these data suggest that the timing of repair protein access to the DNA at stalled forks is determined by the nature of the DNA available at the fork. We propose that RecG acts first, with RuvAB acting either after RecG or in a separate pathway following protein-independent fork regression.  相似文献   
906.
Reviews in Fish Biology and Fisheries - Stock enhancement has been viewed as a positive fisheries management tool for over 100 years. However, decisions to undertake such activities in the past...  相似文献   
907.
Perchlorate (ClO4-) contamination of groundwater has recently become a major concern across the nation. Electrokinetic (EK) extraction with the simultaneous EK injection of organic material to promote degradation could allow for the efficient removal of perchlorate while simultaneously promoting degradation of perchlorate. Column experiments were conducted to evaluate the technology. Lactate and glycine served as organic substrates to promote degradation after injection into the columns as well as maintaining the pH near neutral. Removal of perchlorate from contaminated materials kaolin, sand, and a natural soil historically contaminated by perchlorate was controlled by the ionic flux of perchlorate and not by transport from the osmotic flux which was only significant for kaolin experiments. Perchlorate was removed from contaminated sand and clay below our detection limits (5 ppb). Both lactic acid and glycine were successfully injected into clay and a sand matrix. Results from a contaminated site soil indicate that the Chemical Oxygen Demand was increased after electrokinetic injection of glycine and lactate. Experiments using soil from a contaminated site confirmed that EK can be used to both remove perchlorate and stimulate bioremediation by the injection of lactate or glycine. The use of EK technology to both remove and provide for continued source removal by bioremediation offers a potential new tool to treat low permeability systems.  相似文献   
908.
DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. Department of Agriculture collection. Twenty-four diverse B. anthracis isolates were also included. Phylogenetic analysis of AFLP data revealed extensive diversity within B. thuringiensis and B. cereus compared to the monomorphic nature of B. anthracis. All of the B. anthracis strains were more closely related to each other than to any other Bacillus isolate, while B. cereus and B. thuringiensis strains populated the entire tree. Ten distinct branches were defined, with many branches containing both B. cereus and B. thuringiensis isolates. A single branch contained all the B. anthracis isolates plus an unusual B. thuringiensis isolate that is pathogenic in mice. In contrast, B. thuringiensis subsp. kurstaki (ATCC 33679) and other isolates used to prepare insecticides mapped distal to the B. anthracis isolates. The interspersion of B. cereus and B. thuringiensis isolates within the phylogenetic tree suggests that phenotypic traits used to distinguish between these two species do not reflect the genomic content of the different isolates and that horizontal gene transfer plays an important role in establishing the phenotype of each of these microbes. B. thuringiensis isolates of a particular subspecies tended to cluster together.  相似文献   
909.
910.
An arsenite-oxidizing Hydrogenobaculum strain was isolated from a geothermal spring in Yellowstone National Park, Wyo., that was previously shown to contain microbial populations engaged in arsenite oxidation. The isolate was sensitive to both arsenite and arsenate and behaved as an obligate chemolithoautotroph that used H2 as its sole energy source and had an optimum temperature of 55 to 60°C and an optimum pH of 3.0. The arsenite oxidation in this organism displayed saturation kinetics and was strongly inhibited by H2S.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号