首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6258篇
  免费   775篇
  国内免费   1篇
  7034篇
  2021年   103篇
  2020年   54篇
  2019年   54篇
  2018年   69篇
  2017年   59篇
  2016年   123篇
  2015年   168篇
  2014年   193篇
  2013年   260篇
  2012年   285篇
  2011年   315篇
  2010年   198篇
  2009年   165篇
  2008年   221篇
  2007年   262篇
  2006年   265篇
  2005年   209篇
  2004年   226篇
  2003年   192篇
  2002年   190篇
  2001年   184篇
  2000年   207篇
  1999年   182篇
  1998年   85篇
  1997年   81篇
  1996年   87篇
  1995年   86篇
  1994年   67篇
  1993年   76篇
  1992年   133篇
  1991年   115篇
  1990年   122篇
  1989年   112篇
  1988年   117篇
  1987年   99篇
  1986年   102篇
  1985年   93篇
  1984年   90篇
  1983年   67篇
  1982年   78篇
  1981年   51篇
  1979年   77篇
  1978年   61篇
  1977年   68篇
  1976年   58篇
  1975年   83篇
  1974年   62篇
  1973年   61篇
  1972年   57篇
  1971年   57篇
排序方式: 共有7034条查询结果,搜索用时 0 毫秒
191.
192.
Elevated atmospheric CO(2) generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO(2). To investigate the impacts of ecosystem type and elevated atmospheric CO(2) on cellulolytic fungal communities, we sequenced 10,677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO(2). The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P-values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114-member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO(2) exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO(2) (550 μmol mol(-1)) than under ambient CO(2) (360 μmol mol(-1) CO(2)). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU-specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long-term exposure to elevated atmospheric CO(2).  相似文献   
193.
The COMPASS family of H3K4 methylases in Drosophila   总被引:1,自引:0,他引:1  
Methylation of histone H3 lysine 4 (H3K4) in Saccharomyces cerevisiae is implemented by Set1/COMPASS, which was originally purified based on the similarity of yeast Set1 to human MLL1 and Drosophila melanogaster Trithorax (Trx). While humans have six COMPASS family members, Drosophila possesses a representative of the three subclasses within COMPASS-like complexes: dSet1 (human SET1A/SET1B), Trx (human MLL1/2), and Trr (human MLL3/4). Here, we report the biochemical purification and molecular characterization of the Drosophila COMPASS family. We observed a one-to-one similarity in subunit composition with their mammalian counterparts, with the exception of LPT (lost plant homeodomains [PHDs] of Trr), which copurifies with the Trr complex. LPT is a previously uncharacterized protein that is homologous to the multiple PHD fingers found in the N-terminal regions of mammalian MLL3/4 but not Drosophila Trr, indicating that Trr and LPT constitute a split gene of an MLL3/4 ancestor. Our study demonstrates that all three complexes in Drosophila are H3K4 methyltransferases; however, dSet1/COMPASS is the major monoubiquitination-dependent H3K4 di- and trimethylase in Drosophila. Taken together, this study provides a springboard for the functional dissection of the COMPASS family members and their role in the regulation of histone H3K4 methylation throughout development in Drosophila.  相似文献   
194.
In this study we use dissociated cell cultures of the rat carotid body to investigate the adaptive capabilities of endogenous oxygen chemoreceptors, following chronic stimulation by various environmental factors. These oxygen chemoreceptors are catecholamine-containing glomus cells, which derive from the neural crest and resemble adrenal medullary chromaffin cells. Using double-label immunofluorescence, we found that chronic exposure of carotid body cultures to hypoxia (2% to 10% oxygen) caused a significant fraction of tyrosine hydroxylase-positive (TH+) glomus cells to acquire detectable immunoreactivity for growth-associated protein gap-43. The effect was dose-dependent and peaked around an oxygen tension of 6%, where approximately 30% of glomus cells were GAP-43 positive. Treatment with agents that elevate intracellular cyclic adenosine monophosphate (cAMP) (i.e., dibutyryl cAMP or forskolin) also markedly stimulated GAP-43 expression. Since hypoxia is known to increase cAMP levels in glomus cells, it is possible that the effect of hypoxia on GAP-43 expression was mediated, at least in part, by a cAMP-dependent pathway. Unlike hypoxia, however, cAMP analogs also stimulated neurofilament (NF 68 or NF 160 kD) expression and neurite outgrowth in glomus cells, and these properties were enhanced by retinoic acid. Nerve growth factor, which promotes neuronal differentiation in related crest-derived endocrine cells, and dibutyryl cGMP were ineffective. Thus, it appears that postnatal glomus cells are plastic and can express neuronal traits in vitro. However, since hypoxia stimulated GAP-43 expression, without promoting neurite outgrowth, it appears that the two processes can be uncoupled. We suggest that stimulation of GAP-43 by hypoxia may be important for other physiological processes, e.g., enhancing neurotransmitter release or sensitization of G-protein–coupled receptor transduction. © 1995 John Wiley & Sons, Inc.  相似文献   
195.
Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), infestations in most of North America north of Mexico arise from annual migrations of populations that overwinter in southern Texas and Florida. A comparison of the cytochrome oxidase I haplotype profiles within the fall armyworm corn-strain, the subgroup that preferentially infests corn (Zea mays L.) and sorghum (Sorghum vulgare Pers.), identified significant differences in the proportions of certain haplotypes between the Texas and Florida populations. These proportional differences were preserved as the populations migrated, providing a molecular metric by which the source of a migrant population could be identified. The migratory pattern derived from this method for several southeastern states was shown to be consistent with predictions based on analysis of historical agricultural and fall armyworm infestation data. These results demonstrate the utility of haplotype proportions to monitor fall armyworm migration, and they also introduce a potential method to predict the severity of cotton crop infestations in the short term.  相似文献   
196.
Explanations for the occurrence of deep-rooted plants in arid and semi-arid ecosystems have traditionally emphasized the uptake of relatively deep soil water. However, recent hydrologic data from arid systems show that soil water potentials at depth fluctuate little over long time periods, suggesting this water may be rarely utilized or replenished. In this study, we examine the distributions of root biomass, soil moisture and nutrient contents to 10-m depths at five semi-arid and arid sites across southwestern USA. We couple these depth distributions with strontium (Sr) isotope data that show deep (>1 m) nutrient uptake is prevalent at four of the five sites. At all of the sites, the highest abundance of one or more of the measured nutrients occurred deep within the soil profile, particularly for P, Ca2+ and Mg2+. Phosphate contents were greater at depth than in the top meter of soil at three of five sites. At Jornada, for example, the 2–3 m depth increment had twice the extractable P as the top meter of soil, despite the highest concentrations of P occurring at the surface. The prevalence of such deep resource pools, and our evidence for cation uptake from them, suggest nutrient uptake as a complementary explanation for the occurrence of deep-rooted plants in arid and semi-arid systems. We propose that hydraulic redistribution of shallow surface water to deep soil layers by roots may be the mechanism through which deep soil nutrients are mobilized and taken up by plants.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
197.
The Arabidopsis KRYPTONITE gene encodes a member of the Su(var)3-9 family of histone methyltransferases. Mutations of kryptonite cause a reduction of methylated histone H3 lysine 9, a loss of DNA methylation, and reduced gene silencing. Lysine residues of histones can be either monomethylated, dimethylated or trimethylated and recent evidence suggests that different methylation states are found in different chromatin domains. Here we show that bulk Arabidopsis histones contain high levels of monomethylated and dimethylated, but not trimethylated histone H3 lysine 9. Using both immunostaining of nuclei and chromatin immunoprecipitation assays, we show that monomethyl and dimethyl histone H3 lysine 9 are concentrated in heterochromatin. In kryptonite mutants, dimethyl histone H3 lysine 9 is nearly completely lost, but monomethyl histone H3 lysine 9 levels are only slightly reduced. Recombinant KRYPTONITE can add one or two, but not three, methyl groups to the lysine 9 position of histone H3. Further, we identify a KRYPTONITE-related protein, SUVH6, which displays histone H3 lysine 9 methylation activity with a spectrum similar to that of KRYPTONITE. Our results suggest that multiple Su(var)3-9 family members are active in Arabidopsis and that dimethylation of histone H3 lysine 9 is the critical mark for gene silencing and DNA methylation.  相似文献   
198.
The identification of the genes regulating neural progenitor cell (NPC) functions is of great importance to developmental neuroscience and neural repair. Previously, we combined genetic subtraction and microarray analysis to identify genes enriched in neural progenitor cultures. Here, we apply a strategy to further stratify the neural progenitor genes. In situ hybridization demonstrates expression in the central nervous system germinal zones of 54 clones so identified, making them highly relevant for study in brain and neural progenitor development. Using microarray analysis we find 73 genes enriched in three neural stem cell (NSC)-containing populations generated under different conditions. We use the custom microarray to identify 38 "stemness" genes, with enriched expression in the three NSC conditions and present in both embryonic stem cells and hematopoietic stem cells. However, comparison of expression profiles from these stem cell populations indicates that while there is shared gene expression, the amount of genetic overlap is no more than what would be expected by chance, indicating that different stem cells have largely different gene expression patterns. Taken together, these studies identify many genes not previously associated with neural progenitor cell biology and also provide a rational scheme for stratification of microarray data for functional analysis.  相似文献   
199.
A highly sensitive laser-driven photoacoustic detector responsive to [less than or equal to]2.1 nmol m-3 ethylene (50 parts per trillion [v/v]) was used for ethylene analysis. Dark-grown plants of Potamogeton pectinatus L. growing from small tubers made no ethylene. Exposure of shoots to white light, wounding, submergence in water followed by desubmergence, partial oxygen shortage, indole acetic acid, or carbon dioxide failed to induce ethylene production, although clear effects were observed in Pisum sativum L. Some ethylene was released after applying high concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC; 10 mol m-3) to P. pectinatus, but the amount was trivial compared with that released by P. sativum. More endogenous ACC was found in P. pectinatus than in P. sativum. Considerable ACC oxidase activity was present in tissue extracts of P. sativum. However, no ACC oxidase activity was found in P. pectinatus, indicating that this is where ethylene production is arrested.  相似文献   
200.
Portia is a genus of specialized web-invading salticids that use aggressive mimicry. Some other salticids leap into webs to catch spiders but do not use aggressive mimicry. Pholcus phalangioides is a web-building spider with a special defensive behaviour—called whirling—in which it swings its body around in a circle while keeping its long legs on the silk. Pholcus phalangioides is preyed on by Portia and probably other salticid spiders in nature. Interactions between P. phalangioides and 13 species of salticids were studied in the laboratory to compare how effective salticids with different styles of predation were at catching the pholcids. Four species of Portia were studied and each was more efficient at catching P. phalangioides than were the other nine salticids tested. For one species—Portia fimbriata—individuals from three different populations were studied. The Queensland P. fimbriata used aggressive mimicry more consistently and were more efficient at catching P. phalangioides than were the other species of Portia and the other populations of P. fimbriata . The salticids that were the most efficient at catching pholcids were also better able to avoid setting off whirling by the pholcids. An experiment in which pholcids were artificially induced to whirl whenever the predator was near provided additional evidence that whirling is an effective defence of pholcids against predation by salticids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号