首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8229篇
  免费   816篇
  国内免费   1篇
  2022年   54篇
  2021年   112篇
  2020年   65篇
  2019年   85篇
  2018年   103篇
  2017年   88篇
  2016年   176篇
  2015年   253篇
  2014年   296篇
  2013年   377篇
  2012年   457篇
  2011年   448篇
  2010年   314篇
  2009年   268篇
  2008年   437篇
  2007年   380篇
  2006年   367篇
  2005年   344篇
  2004年   382篇
  2003年   359篇
  2002年   384篇
  2001年   173篇
  2000年   131篇
  1999年   156篇
  1998年   130篇
  1997年   101篇
  1996年   90篇
  1995年   80篇
  1994年   91篇
  1993年   96篇
  1992年   131篇
  1991年   98篇
  1990年   122篇
  1989年   104篇
  1988年   80篇
  1987年   105篇
  1986年   79篇
  1985年   88篇
  1984年   93篇
  1983年   90篇
  1982年   112篇
  1981年   88篇
  1980年   81篇
  1979年   80篇
  1978年   71篇
  1977年   68篇
  1976年   74篇
  1975年   61篇
  1974年   70篇
  1973年   63篇
排序方式: 共有9046条查询结果,搜索用时 296 毫秒
991.
β-Amyloid, a 39–43 amino acid peptide, may exert its biological effects via neuronal nicotinic acetylcholine receptors. Using the ratiometric dye, fura-2, we examined the effect of soluble β-amyloid1–42 on the concentration of intracellular Ca2+ ([Ca2+]i) in acutely dissociated rat basal forebrain neurons. Focal applications of nicotine (0.5–20 mM), evoked dose-dependent increases in intracellular [Ca2+]i that were mediated by the entry of extracellular Ca2+ via nicotinic acetylcholine receptors, and the release of intracellular Ca2+ from stores. With repeated nicotine challenges, the nicotinic responses were potentiated by 98 ± 12% (P < 0.05) while β-amyloid1–42 (100 nM) was present for ∼5 min. This potentiation became larger during the subsequent washout of β-amyloid1–42, which was associated with a gradual rise in baseline [Ca2+]i. Application of β-amyloid1–42 by itself did not alter [Ca2+]i, and β-amyloid1–42 also had no significant effect on the response to repeated KCl challenges. Therefore, β-amyloid1–42 caused neither gross disturbance of cellular Ca2+ homeostasis nor enhancement of voltage-gated Ca2+ channels. Interestingly, β-amyloid1–42 transiently potentiated the response to repeated caffeine challenges, which was also associated with a transient rise in baseline [Ca2+]i. β-amyloid1–42 potentiation of nicotine-evoked rises in [Ca2+]i was reversed by the SERCA pump inhibitor, thapsigargin, and the mitochondrial Na+/Ca2+ exchanger inhibitor, CGP-37157. These results suggest that the dysregulation of [Ca2+]i by β-amyloid1–42 during multiple challenges with nicotine or caffeine involved the sensitization or overfilling of intracellular stores that are maintained by SERCA pump and Ca2+ efflux from the mitochondria.  相似文献   
992.
Anaerobic Saccharomyces cerevisiae cultures reoxidize the excess NADH formed in biosynthesis via glycerol production. This study investigates whether cometabolism of formate, a well-known NADH-generating substrate in aerobic cultures, can increase glycerol production in anaerobic S. cerevisiae cultures. In anaerobic, glucose-limited chemostat sultures (D=0.10 h(-1)) with molar formate-to-glucose ratios of 0 to 0.5, only a small fraction of the formate added to the cultures was consumed. To investigate whether incomplete formate consumption was by the unfavourable kinetics of yeast formate dehydrogenase (high k(M) for formate at low intracellular NAD(+) concentrations) strains were constructed in which the FDH1 and/or GPD2 genes, encoding formate dehydrogenase and glycerol-3-phosphate dehydrogenase, respectively, were overexpressed. The engineered strains consumed up to 70% of the formate added to the feed, thereby increasing glycerol yields to 0.3 mol mol(-1) glucose at a formate-to-glucose ratio of 0.34. In all strains tested, the molar ratio between formate consumption and additional glycerol production relative to a reference culture equalled one. While demonstrating that that format can be use to enhance glycerol yields in anaerobic S. cerevisiae cultures, This study also reveals kinetic constraints of yeast formate dehydrogenase as an NADH-generating system in yeast mediated reduction processes.  相似文献   
993.
Sivaraman S  Kirsch JF 《The FEBS journal》2006,273(9):1920-1929
Human tyrosine aminotransferase (hTATase) is the pyridoxal phosphate-dependent enzyme that catalyzes the reversible transamination of tyrosine to p-hydrophenylpyruvate, an important step in tyrosine metabolism. hTATase deficiency is implicated in the rare metabolic disorder, tyrosinemia type II. This enzyme is a member of the poorly characterized Igamma subfamily of the family I aminotransferases. The full length and truncated forms of recombinant hTATase were expressed in Escherichia coli, and purified to homogeneity. The pH-dependent titration of wild-type reveals a spectrum characteristic of family I aminotransferases with an aldimine pK(a) of 7.22. I249A mutant hTATase exhibits an unusual spectrum with a similar aldimine pK(a) (6.85). hTATase has very narrow substrate specificity with the highest enzymatic activity for the Tyr/alpha-ketoglutarate substrate pair, which gives a steady state k(cat) value of 83 s(-1). In contrast there is no detectable transamination of aspartate or other cosubstrates. The present findings show that hTATase is the only known aminotransferase that discriminates significantly between Tyr and Phe: the k(cat)/K(m) value for Tyr is about four orders of magnitude greater than that for Phe. A comparison of substrate specificities of representative Ialpha and Igamma aminotransferases is described along with the physiological significance of the discrimination between Tyr and Phe by hTATase as applied to the understanding of the molecular basis of phenylketonuria.  相似文献   
994.
Extracellular ATP is known to mediate synaptic transmission as a neurotransmitter or a neuromodulator via ionotropic P2X and metabotropic P2Y receptors. Several lines of evidence have suggested that ATP facilitates pain transmission at peripheral and spinal sites via the P2X receptors, in which the P2X3 subtype is considered as an important candidate for the effect. Conversely, we previously found that the activation of supraspinal P2X receptors evoked antinociception. However, the subtypes responsible for the antinociception via supraspinal P2X receptors remain unclear. In the present study, we showed that intracerebroventricular (i.c.v.) pretreatment with A-317491 (1 nmol), the novel non-nucleotide antagonist selective for P2X3 and P2X2/3 receptors, attenuated the antinociceptive effect produced by i.c.v. administered α,β-methylene-ATP (10 nmol), the P2X receptor agonist, in rats. Similarly, the abolishment of the P2X3 receptor mRNA in the brainstem by repeated i.c.v. pretreatments with antisense oligodeoxynucleotide for P2X3 gene once a day for 5 consecutive days diminished the antinociceptive effect of α,β-methylene-ATP. Furthermore, i.c.v. administration of A-317491 (1 and 10 nmol) significantly enhanced the inflammatory nociceptive behaviors induced by the intraplantar injection of formalin and intraperitoneal injection of acetic acid. Taken together, these results suggest that supraspinal P2X3/P2X2/3 receptors play an inhibitory role in pain transmission.  相似文献   
995.
RNA targets of multitargeted RNA-binding proteins (RBPs) can be studied by various methods including mobility shift assays, iterative in vitro selection techniques and computational approaches. These techniques, however, cannot be used to identify the cellular context within which mRNAs associate, nor can they be used to elucidate the dynamic composition of RNAs in ribonucleoprotein (RNP) complexes in response to physiological stimuli. But by combining biochemical and genomics procedures to isolate and identify RNAs associated with RNA-binding proteins, information regarding RNA-protein and RNA-RNA interactions can be examined more directly within a cellular context. Several protocols--including the yeast three-hybrid system and immunoprecipitations that use physical or chemical cross-linking--have been developed to address this issue. Cross-linking procedures in general, however, are limited by inefficiency and sequence biases. The approach outlined here, termed RNP immunoprecipitation-microarray (RIP-Chip), allows the identification of discrete subsets of RNAs associated with multi-targeted RNA-binding proteins and provides information regarding changes in the intracellular composition of mRNPs in response to physical, chemical or developmental inducements of living systems. Thus, RIP-Chip can be used to identify subsets of RNAs that have related functions and are potentially co-regulated, as well as proteins that are associated with them in RNP complexes. Using RIP-Chip, the identification and/or quantification of RNAs in RNP complexes can be accomplished within a few hours or days depending on the RNA detection method used.  相似文献   
996.
Animal models for human diseases are highly valued for their utility in developing new therapies. Animals have long provided suitable platforms for the development of innovative surgical procedures and for the study of disease states that are relatively easy to produce in otherwise healthy animals, such as diabetes or hypertension. Increasingly, new strains of animals susceptible to common human illnesses are being introduced into medical research, promising new inroads into the treatment of a variety of organic disorders. Despite these advances in model development, psychiatric disorders, by and large, remain among the hardest to induce experimentally, and the search for reasonable animal procedures to study diseases of the mind is an ongoing challenge for experimental biologists. An exception to this limitation, however, comes in the study of drug abuse. Major developments in this area of research over the last several decades have steadily advanced our ability to identify pharmacological, genetic, and environmental determinants that contribute to the development of drug dependence and addictive behavior.  相似文献   
997.
998.
Recent reports have indicated that honokiol can induce apoptosis, suppress tumor growth, and inhibit angiogenesis. In this report, we found that honokiol potentiated the apoptosis induced by tumor necrosis factor (TNF) and chemotherapeutic agents, suppressed TNF-induced tumor cell invasion, and inhibited RANKL-induced osteoclastogenesis, all of which are known to require nuclear factor-kappaB (NF-kappaB) activation. Honokiol suppressed NF-kappaB activation induced by a variety of inflammatory stimuli, and this suppression was not cell type specific. Further studies showed that honokiol blocked TNF-induced phosphorylation, ubiquitination, and degradation of IkappaBalpha through the inhibition of activation of IkappaBalpha kinase and of Akt. This led to suppression of the phosphorylation and nuclear translocation of p65 and NF-kappaB-dependent reporter gene expression. Magnolol, a honokiol isomer, was equally active. The expression of NF-kappaB-regulated gene products involved in antiapoptosis (IAP1, IAP2, Bcl-x(L), Bcl-2, cFLIP, TRAF1, and survivin), proliferation (cyclin D1, cyclooxygenase-2, and c-myc), invasion (matrix metalloproteinase-9 and intercellular adhesion molecule-1), and angiogenesis (vascular endothelial growth factor) were also down-regulated by honokiol. Honokiol also down-regulated NF-kappaB activation in in vivo mouse dorsal skin model. Thus, overall, our results indicate that NF-kappaB and NF-kappaB-regulated gene expression inhibited by honokiol enhances apoptosis and suppresses osteoclastogenesis and invasion.  相似文献   
999.
BACKGROUND: This report focuses on the common protocol developed by the Muscular Dystrophy Surveillance Tracking and Research Network (MD STARnet) for population-based surveillance of Duchenne and Becker muscular dystrophy (DBMD) among 4 states (Arizona, Colorado, Iowa, and New York). METHODS: The network sites have developed a case definition and surveillance protocol along with software applications for medical record abstraction, clinical review, and pooled data. Neuromuscular specialists at each site review the pooled data to determine if a case meets the case criteria. Sources of potential cases of DBMD include neuromuscular specialty clinics, service sites for children with special healthcare needs, and hospital discharge databases. Each site also adheres to a common information assurance protocol. RESULTS: A population-based surveillance system for DBMD was created and implemented in participating states. CONCLUSIONS: The development and implementation of the population-based system will allow for the collection of information that is intended to provide a greater understanding of DBMD prevalence and health outcomes.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号