首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5795篇
  免费   566篇
  国内免费   1篇
  6362篇
  2022年   47篇
  2021年   88篇
  2020年   50篇
  2019年   45篇
  2018年   72篇
  2017年   60篇
  2016年   130篇
  2015年   192篇
  2014年   207篇
  2013年   254篇
  2012年   320篇
  2011年   343篇
  2010年   241篇
  2009年   205篇
  2008年   330篇
  2007年   297篇
  2006年   266篇
  2005年   256篇
  2004年   296篇
  2003年   282篇
  2002年   306篇
  2001年   86篇
  2000年   61篇
  1999年   76篇
  1998年   95篇
  1997年   69篇
  1996年   58篇
  1995年   59篇
  1994年   59篇
  1993年   60篇
  1992年   61篇
  1991年   54篇
  1990年   64篇
  1989年   46篇
  1988年   46篇
  1987年   56篇
  1986年   37篇
  1985年   64篇
  1984年   51篇
  1983年   74篇
  1982年   92篇
  1981年   71篇
  1980年   64篇
  1979年   43篇
  1978年   50篇
  1977年   43篇
  1976年   45篇
  1975年   43篇
  1974年   41篇
  1973年   44篇
排序方式: 共有6362条查询结果,搜索用时 15 毫秒
271.
Abstract

Redox reactions of iron in acidic environments are of economic and environmental significance, for example, for the leaching of metal ores and for the formation of acid mine drainage and acid sulfate soils. Until recently, research on microbial iron metabolism in acidic environments has mainly been focused on the role of aerobic, autotrophic ferrous iron‐oxidizing bacteria. In the present paper, recent new developments in the field of acidophilic iron metabolism are reviewed. In addition to the well‐known autotrophic ferrous iron‐oxidizing organisms, new heterotrophic isolates have been described that are capable of oxidizing ferrous iron. Microorganisms can also play an important role in the reductive part of the iron cycle. Both heterotrophic and autotrophic organisms may also be involved in this process. The contribution of heterotrophic organisms to acidophilic iron cycling can be twofold: In addition to their direct role as a catalyst, these organisms may scavenge organic compounds that inhibit their autotrophic counterparts. Detailed studies of acidophilic ecosystems are needed to assess the significance of the various types of microorganisms for the overall rate of iron cycling in these extreme environments.  相似文献   
272.
273.
Our aim is to study selected cerebrospinal fluid (CSF) glycerophospholipids (GP) that are important in brain pathophysiology. We recruited cognitively healthy (CH), minimally cognitively impaired (MCI), and late onset Alzheimer''s disease (LOAD) study participants and collected their CSF. After fractionation into nanometer particles (NP) and supernatant fluids (SF), we studied the lipid composition of these compartments. LC-MS/MS studies reveal that both CSF fractions from CH subjects have N-acyl phosphatidylethanolamine, 1-radyl-2-acyl-sn-glycerophosphoethanolamine (PE), 1-radyl-2-acyl-sn-glycerophosphocholine (PC), 1,2-diacyl-sn-glycerophosphoserine (PS), platelet-activating factor-like lipids, and lysophosphatidylcholine (LPC). In the NP fraction, GPs are enriched with a mixture of saturated, monounsaturated, and polyunsaturated fatty acid species, while PE and PS in the SF fractions are enriched with PUFA-containing molecular species. PC, PE, and PS levels in CSF fractions decrease progressively in participants from CH to MCI, and then to LOAD. Whereas most PC species decrease equally in LOAD, plasmalogen species account for most of the decrease in PE. A significant increase in the LPC-to-PC ratio and PLA2 activity accompanies the GP decrease in LOAD. These studies reveal that CSF supernatant fluid and nanometer particles have different GP composition, and that PLA2 activity accounts for altered GPs in these fractions as neurodegeneration progresses.  相似文献   
274.
275.
Hydrogen sulfide is an inflammatory mediator and is produced by the activity of the enzyme cystathionine γ-lyase (CSE) in macrophages. Previously, pharmacological inhibition of CSE has been reported to have conflicting results, and this may be due to the lack of specificity of the pharmacological agents. Therefore, this study used a very specific approach of small interfering RNA (siRNA) to inhibit the production of the CSE in an in vitro setting. We found that the activation of macrophages by lipopolysaccharide (LPS) resulted in higher levels of CSE mRNA and protein as well as the increased production of proinflammatory cytokines and nitric oxide (NO). We successfully used siRNA to specifically reduce the levels of CSE mRNA and protein in activated macrophages. Furthermore, the levels of proinflammatory cytokines in LPS-activated macrophages were significantly lower in siRNA-transfected cells compared to those in untransfected controls. However, the production levels of NO by the transfected cells were higher, suggesting that CSE activity has an inhibitory effect on NO production. These findings suggest that the CSE enzyme has a crucial role in the activation of macrophages, and its activity has an inhibitory effect on NO production by these cells.  相似文献   
276.
277.
The accumulation of body mass, as growth, is fundamental to all organisms. Being able to understand which model(s) best describe this growth trajectory, both empirically and ultimately mechanistically, is an important challenge. A variety of equations have been proposed to describe growth during ontogeny. Recently, the West Brown Enquist (WBE) equation, formulated as part of the metabolic theory of ecology, has been proposed as a universal model of growth. This equation has the advantage of having a biological basis, but its ability to describe invertebrate growth patterns has not been well tested against other, more simple models. In this study, we collected data for 58 species of marine invertebrate from 15 different taxa. The data were fitted to three growth models (power, exponential and WBE), and their abilities were examined using an information theoretic approach. Using Akaike information criteria, we found changes in mass through time to fit an exponential equation form best (in approx. 73% of cases). The WBE model predominantly overestimates body size in early ontogeny and underestimates it in later ontogeny; it was the best fit in approximately 14% of cases. The exponential model described growth well in nine taxa, whereas the WBE described growth well in one of the 15 taxa, the Amphipoda. Although the WBE has the advantage of being developed with an underlying proximate mechanism, it provides a poor fit to the majority of marine invertebrates examined here, including species with determinate and indeterminate growth types. In the original formulation of the WBE model, it was tested almost exclusively against vertebrates, to which it fitted well; the model does not however appear to be universal given its poor ability to describe growth in benthic or pelagic marine invertebrates.  相似文献   
278.
279.
Tenofovir (TFV) has been widely used for pre-exposure prophylaxis of HIV-1 infection with mixed results. While the use of TFV in uninfected individuals for prevention of HIV-1 acquisition is actively being investigated, the possible consequences of TFV exposure for the HIV-target cells and the mucosal microenvironment are unknown. In the current study, we evaluated the effects of TFV treatment on blood-derived CD4+ T cells, monocyte-derived macrophages and dendritic cells (DC). Purified HIV-target cells were treated with different concentrations of TFV (0.001-1.0 mg/ml) for 2 to 24hr. RNA was isolated and RT-PCR was performed to compare the levels of mRNA expression of nucleotidases and pro-inflammatory cytokine genes (MIP3α, IL-8 and TNFα) in the presence or absence of TFV. We found that TFV increases 5’-ecto-nucleotidase (NT5E) and inhibits mitochondrial nucleotidase (NT5M) gene expression and increases 5’ nucleotidase activity in macrophages. We also observed that TFV stimulates the expression and secretion of IL-8 by macrophages, DC, and activated CD4+ T cells and increases the expression and secretion of MIP3α by macrophages. In contrast, TFV had no effect on TNFα secretion from macrophages, DC and CD4+ T cells. Our results demonstrate that TFV alters innate immune responses in HIV-target cells with potential implications for increased inflammation at mucosal surfaces. As new preventive trials are designed, these findings should provide a foundation for understanding the effects of TFV on HIV-target cells in microbicide trials.  相似文献   
280.
Previous studies have shown that the small molecule iron transport inhibitor ferristatin (NSC30611) acts by down-regulating transferrin receptor-1 (TfR1) via receptor degradation. In this investigation, we show that another small molecule, ferristatin II (NSC8679), acts in a similar manner to degrade the receptor through a nystatin-sensitive lipid raft pathway. Structural domains of the receptor necessary for interactions with the clathrin pathway do not appear to be necessary for ferristatin II induced degradation of TfR1. While TfR1 constitutively traffics through clathrin-mediated endocytosis, with or without ligand, the presence of Tf blocked ferristatin II induced degradation of TfR1. This effect of Tf was lost in a ligand binding receptor mutant G647A TfR1, suggesting that Tf binding to its receptor interferes with the drug’s activity. Rats treated with ferristatin II have lower TfR1 in liver. These effects are associated with reduced intestinal 59Fe uptake, lower serum iron and transferrin saturation, but no change in liver non-heme iron stores. The observed hypoferremia promoted by degradation of TfR1 by ferristatin II appears to be due to induced hepcidin gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号