首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5980篇
  免费   572篇
  国内免费   1篇
  6553篇
  2022年   47篇
  2021年   87篇
  2020年   47篇
  2019年   44篇
  2018年   70篇
  2017年   58篇
  2016年   132篇
  2015年   199篇
  2014年   208篇
  2013年   261篇
  2012年   324篇
  2011年   349篇
  2010年   249篇
  2009年   214篇
  2008年   344篇
  2007年   309篇
  2006年   279篇
  2005年   272篇
  2004年   317篇
  2003年   283篇
  2002年   321篇
  2001年   92篇
  2000年   71篇
  1999年   75篇
  1998年   91篇
  1997年   71篇
  1996年   59篇
  1995年   53篇
  1994年   60篇
  1993年   66篇
  1992年   70篇
  1991年   58篇
  1990年   65篇
  1989年   52篇
  1988年   49篇
  1987年   64篇
  1986年   40篇
  1985年   62篇
  1984年   53篇
  1983年   73篇
  1982年   93篇
  1981年   75篇
  1980年   67篇
  1979年   47篇
  1978年   52篇
  1977年   43篇
  1976年   43篇
  1975年   46篇
  1974年   45篇
  1973年   46篇
排序方式: 共有6553条查询结果,搜索用时 15 毫秒
51.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks and 5'-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair.  相似文献   
52.
Rhodococcus equi is a facultative pathogen of foals. Infection causes an often fatal pulmonary pneumonia. The organism has also been isolated from pigs, cattle, humans and the environment. Equine virulence has a high positive correlation with the expression of a 17.4 kD polypeptide of unknown function, VapA, the product of the plasmid-encoded vapA gene. More recently an isogene of vapA, referred to as vapB and encoding an 18.2 kDa polypeptide, has been identified among pig and human isolates. The two genes share > 80% sequence identity, yet their host strains apparently exhibit different pathogenicity profiles (for example by reference to virulence in mouse model system and host specificity). In this study, a polymerase chain reaction (PCR) technique was developed that permits the selective amplification of vapA and vapB. Using this technique the distribution of the two genes among 35 randomly selected isolates of Rhodococcus equi from various animal and environmental sources was determined. Using this technique the genotype of each isolate could be unambiguously assigned as vapA+, vapB+ or vap- (i.e., scoring negative for both vapA and vapB). No isolate scored positive for both vapA and vapB. 100% of equine isolates scored vapA+, confirming the status of vapA as a reliable marker of equine virulence. All three genotypes were found among human isolates; porcine isolates scored either vapB+ or vap- and no vapA+ isolates were present in this sample. Rigorous statistical analysis using the Fisher Exact test confirmed that the high frequency of vapA+ among equine isolates is significant; however the sample size was too small to draw statistically significant conclusions regarding the distribution of genotypes among within other animal groups.  相似文献   
53.
Although Blm and Top3α are known to form a minimal dissolvasome that can uniquely undo a double Holliday junction structure, the details of the mechanism remain unknown. It was originally suggested that Blm acts first to create a hemicatenane structure from branch migration of the junctions, followed by Top3α performing strand passage to decatenate the interlocking single strands. Recent evidence suggests that Top3α may also be important for assisting in the migration of the junctions. Using a mismatch-dHJ substrate (MM-DHJS) and eukaryotic Top1 (in place of Top3α), we show that the presence of a topoisomerase is required for Blm to substantially migrate a topologically constrained Holliday junction. When investigated by electron microscopy, these migrated structures did not resemble a hemicatenane. However, when Blm is together with Top3α, the dissolution reaction is processive with no pausing at a partially migrated structure. Potential mechanisms are discussed.  相似文献   
54.
Prediction accuracies of estimated breeding values for economically important traits are expected to benefit from genomic information. Single nucleotide polymorphism (SNP) panels used in genomic prediction are increasing in density, but the Markov Chain Monte Carlo (MCMC) estimation of SNP effects can be quite time consuming or slow to converge when a large number of SNPs are fitted simultaneously in a linear mixed model. Here we present an EM algorithm (termed “fastBayesA”) without MCMC. This fastBayesA approach treats the variances of SNP effects as missing data and uses a joint posterior mode of effects compared to the commonly used BayesA which bases predictions on posterior means of effects. In each EM iteration, SNP effects are predicted as a linear combination of best linear unbiased predictions of breeding values from a mixed linear animal model that incorporates a weighted marker-based realized relationship matrix. Method fastBayesA converges after a few iterations to a joint posterior mode of SNP effects under the BayesA model. When applied to simulated quantitative traits with a range of genetic architectures, fastBayesA is shown to predict GEBV as accurately as BayesA but with less computing effort per SNP than BayesA. Method fastBayesA can be used as a computationally efficient substitute for BayesA, especially when an increasing number of markers bring unreasonable computational burden or slow convergence to MCMC approaches.  相似文献   
55.
A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase) that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion) of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber) required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine). Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic cleavage of the cellulose chains per se, but rather the limited accessibility of the enzymes to the cellulose chains due to the physical structure of the cellulosic substrate.  相似文献   
56.
Abstract

The palladium-catalyzed cross-couplings of 2-chloro-3,5-diamino-6-iodopyrazine (1a) and methyl 3-amino-6-iodopyrazine-2-carboxylate (1b) with 1,4-anhydro-3,5-O-bis[(tert-butyl)dimethylsilyl]-2-deoxy-D-erythro-pent-1-enitol (2) followed by desilylation and stereospecific reduction of the 2′-deoxy-3′-keto adduct leads to the formation of 2-chloro-6-(2-deoxy-ß-D-ribofuranosyl)-3,5-diaminopyrazine (4a) and methyl 3-amino-6-(2-deoxy-ß-D-ribofuranosyl)pyrazine-2-carboxylate (4b) in 58% yield and 21% yield, respectively. These are the first syntheses of the heretofore unknown 2′-deoxy pyrazine C-nucleosides and demonstrate the utility of a convergent approach for the synthesis of pyrazine C-nucleosides.  相似文献   
57.
58.
59.
Acid-soluble collagen (ASC) and pepsin solubilized collagen (PSC) isolated and purified from alligator (Alligator mississippiensis) bone were studied for molecular size, amino acid profile, secondary structure, and denaturation temperature by SDS-PAGE, HPLC, circular dichroism, and viscometry. Two collagen subunits, alpha1 and alpha2 were identified by SDS-PAGE. The molecular masses for alpha1 and alpha2 chains of ASC were 124 kDa and 111 kDa, respectively. The molecular masses were 123 kDa for alpha1 and 110 kDa for alpha2 chains of the PSC preparation. The molecular masses for ([alpha1](2) alpha2) of ASC and PSC were 359 kDa and 356 kDa, respectively. The major composition of alligator bone ASC and PSC was found to be typical type I collagen. The amino acid profiles of alligator ASC and PSC were similar to amino acid profile of subtropical fish black drum (Pogonias cromis, Sciaenidae) bone. Comparison of amino acid profiles with shark cartilage PSC, showed differences in alanine, hydroxylysine, lysine, and histidine contents. The denaturation temperatures (T(d)) of alligator ASC and PSC collagen measured by viscometry were 38.1 and 38.2 degrees C, respectively. Thermal denaturation temperatures, measured by melting point using circular dichroism, were 37.6 and 37.9 degrees C, respectively. Taken together, these results suggest that alligator bone collagen may find a wide range of applications in biological research, functional foods and nutraceuticals, and biomedical and pharmaceutical research.  相似文献   
60.
Nucleotide substitutions (i.e., point mutations) are the primary driving force in generating DNA variation upon which selection can act. Substitutions called transitions, which entail exchanges between purines (A=adenine, G=guanine) or pyrimidines (C=cytosine, T=thymine), typically outnumber transversions (e.g., exchanges between a purine and a pyrimidine) in a DNA strand. With an increasing number of plant studies revealing a transversion rather than transition bias, we chose to perform a detailed substitution analysis for the plant family Cucurbitaceae using data from several short plastid DNA sequences. We generated a phylogenetic tree for 19 taxa of the tribe Benincaseae and related genera and then scored conservative substitution changes (e.g., those not exhibiting homoplasy or reversals) from the unambiguous branches of the tree. Neither the transition nor (A+T)/(G+C) biases found in previous studies were supported by our overall data. More importantly, we found a novel and symmetrical substitution bias in which Gs had been preferentially replaced by A, As by C, Cs by T, and Ts by G, resulting in the GACTG substitution series. Understanding this pattern will lead to new hypotheses concerning plastid evolution, which in turn will affect the choices of substitution models and other tree-building algorithms for phylogenetic analyses based on nucleotide data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号