首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   9篇
  125篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   5篇
  2009年   6篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2001年   4篇
  2000年   1篇
  1999年   7篇
  1998年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   7篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   10篇
  1978年   11篇
  1977年   4篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1969年   1篇
排序方式: 共有125条查询结果,搜索用时 0 毫秒
31.
The uptake of the nuclear waste product technetium-99 was studied in common duckweed (Lemna minor). In addition to measurements, a model involving two compartments in duckweed with different chemical forms of technetium was derived. The model was tested by chemical speciation, i.e. differentiating between reduced Tc-compounds and Tc(VII)O(4)(-). The TcO(4)(-) concentrations measured were in good agreement with those predicted by the model. Two processes determine technetium uptake: (1) transport of Tc(VII)O(4)(-) across the cell membrane, and (2) reduction of Tc(VII). The TcO(4)(-) concentration in duckweed reaches a steady state within 2 h while reduced Tc-compounds are stored, as a result of absence of release or re-oxidation processes. Bioaccumulation kinetic properties were derived by varying 99Tc concentration, temperature, nutrient concentrations, and light intensity. The reduction of technetium in duckweed was highly correlated with light intensity and temperature. At 25 degrees C the maximum reduction rate was observed at light intensities above 200 μmol m(-2) s(-1) while half of the maximum transformation rate was reached at 41 μmol m(-2) s(-1). Transport of TcO(4)(-) over the cell membrane requires about 9.4 kJ mol(-1), indicating an active transport mechanism. However, this mechanism behaved as first-order kinetics instead of Michaelis-Menten kinetics between 1x10(-14) and 2.5x10(-5) mol l(-1) TcO(4)(-). Tc uptake could not be inhibited by 10(-3) mol l(-1) nitrate, phosphate, sulphate or chloride.  相似文献   
32.
33.
34.
Although many secondary metabolites with diverse biological activities have been isolated from myxobacteria, most strains of these biotechnologically important gliding prokaryotes remain difficult to handle genetically. In this study we describe the new fast growing myxobacterial thermophilic isolate GT-2 as a heterologous host for the expression of natural product biosynthetic pathways isolated from other myxobacteria. According to the results of sequence analysis of the 16S rDNA, this moderately thermophilic isolate is closely related to Corallococcus macrosporus and was therefore named C. macrosporus GT-2. Fast growth of moderately thermophilic strains results in shorter fermentation and generation times, aspects which are of significant interest for molecular biological work as well as production of secondary metabolites. Development of a genetic manipulation system allowed the introduction of the complete myxochromide biosynthetic gene cluster, located on a transposable fragment, into the chromosome of GT-2. Genetic engineering of the biosynthetic gene cluster by promoter exchange leads to much higher production of myxochromides in the heterologous host C. macrosporus GT-2 in comparison to the original producer Stigmatella aurantiaca and to the previously described heterologous host Pseudomonas putida (600 mg/L versus 8 mg/L and 40 mg/L, respectively).  相似文献   
35.
A dramatic difference is observed in the intracellular distribution of the high mobility group (HMG) proteins when chicken embryo fibroblasts are fractionated into nucleus and cytoplasm by either mass enucleation of cytochalasin-B-treated cells or by differential centrifugation of mechanically disrupted cells. Nuclei (karyoplasts) obtained by cytochalasin B treatment of cells contain more than 90 percent of the HMG 1, while enucleated cytoplasts contain the remainder. A similar distribution between karyoplasts and cytoplasts is observed for the H1 histones and the nucleosomal core histones as anticipated. The presence of these proteins, in low amounts, in the cytoplast preparation can be accounted for by the small percentage of unenucleated cells present. In contrast, the nuclei isolated from mechanically disrupted cells contain only 30-40 percent of the total HMGs 1 and 2, the remainder being recovered in the cytosol fraction. No histone is observed in the cytosol fraction. Unike the higher molecular weight HMGs, most of the HMGs 14 and 17 sediment with the nuclei after cell lysis by mechanical disruption. The distribution of HMGs is unaffected by incubating cells with cytochalasin B and mechanically fractionating rather than enucleating them. Therefore, the dramatic difference in HMG 1 distribution observed using the two fractionation techniques cannot be explained by a cytochalasin-B-induced redistribution. On reextraction and sedimentation of isolated nuclei obtained by mechanical cell disruption, only 8 percent of the HMG 1 is released to the supernate. Thus, the majority of the HMG 1 originally isolated with these nuclei, representing 35 percent of the total HMG 1, is stably bound, as is all the HMGs 14 and 17. The remaining 65 percent of the HMGs 1 and 2 is unstably bound and leaks to the cytosol fraction under the conditions of mechanical disruption. It is suggested that the unstably bound HMGs form a protein pool capable of equilibrating between cytoplasm and stably bound HMGs.  相似文献   
36.

Background  

The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes.  相似文献   
37.

Introduction

The main objective of this study was to determine whether meniscus cells from the outer (MCO) and inner (MCI) regions of the meniscus interact similarly to or differently with mesenchymal stromal stem cells (MSCs). Previous study had shown that co-culture of meniscus cells with bone marrow-derived MSCs result in enhanced matrix formation relative to mono-cultures of meniscus cells and MSCs. However, the study did not examine if cells from the different regions of the meniscus interacted similarly to or differently with MSCs.

Methods

Human menisci were harvested from four patients undergoing total knee replacements. Tissue from the outer and inner regions represented pieces taken from one third and two thirds of the radial distance of the meniscus, respectively. Meniscus cells were released from the menisci after collagenase treatment. Bone marrow MSCs were obtained from the iliac crest of two patients after plastic adherence and in vitro culture until passage 2. Primary meniscus cells from the outer (MCO) or inner (MCI) regions of the meniscus were co-cultured with MSCs in three-dimensional (3D) pellet cultures at 1:3 ratio, respectively, for 3 weeks in the presence of serum-free chondrogenic medium containing TGF-β1. Mono-cultures of MCO, MCI and MSCs served as experimental control groups. The tissue formed after 3 weeks was assessed biochemically, histochemically and by quantitative RT-PCR.

Results

Co-culture of inner (MCI) or outer (MCO) meniscus cells with MSCs resulted in neo-tissue with increased (up to 2.2-fold) proteoglycan (GAG) matrix content relative to tissues formed from mono-cultures of MSCs, MCI and MCO. Co-cultures of MCI or MCO with MSCs produced the same amount of matrix in the tissue formed. However, the expression level of aggrecan was highest in mono-cultures of MSCs but similar in the other four groups. The DNA content of the tissues from co-cultured cells was not statistically different from tissues formed from mono-cultures of MSCs, MCI and MCO. The expression of collagen I (COL1A2) mRNA increased in co-cultured cells relative to mono-cultures of MCO and MCI but not compared to MSC mono-cultures. Collagen II (COL2A1) mRNA expression increased significantly in co-cultures of both MCO and MCI with MSCs compared to their own controls (mono-cultures of MCO and MCI respectively) but only the co-cultures of MCO:MSCs were significantly increased compared to MSC control mono-cultures. Increased collagen II protein expression was visible by collagen II immuno-histochemistry. The mRNA expression level of Sox9 was similar in all pellet cultures. The expression of collagen × (COL10A1) mRNA was 2-fold higher in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs. Additionally, other hypertrophic genes, MMP-13 and Indian Hedgehog (IHh), were highly expressed by 4-fold and 18-fold, respectively, in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs.

Conclusions

Co-culture of primary MCI or MCO with MSCs resulted in enhanced matrix formation. MCI and MCO increased matrix formation similarly after co-culture with MSCs. However, MCO was more potent than MCI in suppressing hypertrophic differentiation of MSCs. These findings suggest that meniscus cells from the outer-vascular regions of the meniscus can be supplemented with MSCs in order to engineer functional grafts to reconstruct inner-avascular meniscus.  相似文献   
38.

Background

Internet-based self-management has shown to improve asthma control and asthma related quality of life, but the improvements were only marginally clinically relevant for the group as a whole. We hypothesized that self-management guided by weekly monitoring of asthma control tailors pharmacological therapy to individual needs and improves asthma control for patients with partly controlled or uncontrolled asthma.

Methods

In a 1-year randomised controlled trial involving 200 adults (18-50 years) with mild to moderate persistent asthma we evaluated the adherence with weekly monitoring and effect on asthma control and pharmacological treatment of a self-management algorithm based on the Asthma Control Questionnaire (ACQ). Participants were assigned either to the Internet group (n = 101) that monitored asthma control weekly with the ACQ on the Internet and adjusted treatment using a self-management algorithm supervised by an asthma nurse specialist or to the usual care group (UC) (n = 99). We analysed 3 subgroups: patients with well controlled (ACQ ≤ 0.75), partly controlled (0.75>ACQ ≤ 1.5) or uncontrolled (ACQ>1.5) asthma at baseline.

Results

Overall monitoring adherence was 67% (95% CI, 60% to 74%). Improvements in ACQ score after 12 months were -0.14 (p = 0.23), -0.52 (p < 0.001) and -0.82 (p < 0.001) in the Internet group compared to usual care for patients with well, partly and uncontrolled asthma at baseline, respectively. Daily inhaled corticosteroid dose significantly increased in the Internet group compared to usual care in the first 3 months in patients with uncontrolled asthma (+278 μg, p = 0.001), but not in patients with well or partly controlled asthma. After one year there were no differences in daily inhaled corticosteroid use or long-acting β2-agonists between the Internet group and usual care.

Conclusions

Weekly self-monitoring and subsequent treatment adjustment leads to improved asthma control in patients with partly and uncontrolled asthma at baseline and tailors asthma medication to individual patients'' needs.

Trial registration

Current Controlled Trials ISRCTN79864465  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号