首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1747篇
  免费   94篇
  2023年   4篇
  2022年   15篇
  2021年   23篇
  2020年   19篇
  2019年   20篇
  2018年   37篇
  2017年   23篇
  2016年   45篇
  2015年   84篇
  2014年   77篇
  2013年   143篇
  2012年   124篇
  2011年   152篇
  2010年   79篇
  2009年   61篇
  2008年   132篇
  2007年   128篇
  2006年   124篇
  2005年   114篇
  2004年   99篇
  2003年   100篇
  2002年   65篇
  2001年   12篇
  2000年   13篇
  1999年   17篇
  1998年   15篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   9篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   10篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   4篇
  1972年   2篇
  1967年   1篇
  1965年   1篇
排序方式: 共有1841条查询结果,搜索用时 156 毫秒
991.
Human macrophage inflammatory protein-3alpha (MIP-3alpha; CCL20) is a CC-type chemokine that binds to and activates CC chemokine receptor-6 (CCR6). Although MIP-3alpha does not share the binding site of CCR6 with any other chemokine, human beta-defensin-1 and -2, small cationic antimicrobial peptides, have also been found to bind to and activate CCR6. Conversely, we have found that MIP-3alpha possesses antibacterial activity of greater potency than human beta-defensin-1 and -2 against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, while having no activity against the fungus Candida albicans. There is no clear sequence similarity between beta-defensins and the chemokine MIP-3alpha, beyond an abundance of cationic residues and the presence of disulfide bonds. Nonetheless, there are structural similarities between these three proteins that allow their overlap of chemotactic and antimicrobial activities. In this report, we describe the x-ray crystal structure of human MIP-3alpha refined to a resolution of 1.7 A and compare it with the crystal structures of human beta-defensin-1 and -2. Molecules of MIP-3alpha and the beta-defensins seem to share few structural motifs that are likely associated with their common biological activities.  相似文献   
992.
Nuclear transfer to produce cattle is inefficient because 1) donor cells are not easily synchronized in the proper phase of the cell cycle, 2) the nucleus of these cells is not effectively reprogrammed, 3) the rate of attrition of late-term pregnancies is high, and 4) the health of early postnatal calves is compromised. The cyclin dependent kinase 2 inhibitor, roscovitine, was used to maximize cell cycle synchrony and to produce cells that responded more reliably to nuclear reprogramming. Roscovitine-treated adult bovine granulosa cells (82.4%) were more efficiently synchronized (P < 0.05) in the quiescent G0/G1 phase of the cell cycle than were serum-starved cells (76.7%). Although blastocyst development following nuclear transfer was elevated (P < 0.05) in the serum-starved group (21.1%) relative to the roscovitine-treated cells (11.8%), the number of cells in the blastocysts derived from roscovitine-treated cells was higher (P < 0.05) than those derived from the serum-starved group (roscovitine-treated group: 142.8 +/- 6.0 cells; serum-starved group: 86.8 +/- 14.5 cells). The resulting fetal and calf survival after embryo transfer was enhanced in the roscovitine-treated group (seven surviving calves from six pregnancies) compared with serum-starved controls (two calves born, one surviving beyond 60 days, from five pregnancies). Roscovitine culture can predictably synchronize the donor cell cycle and increase the nuclear reprogramming capacity of the cells, resulting in enhanced fetal and calf survival and increased cloning efficiency.  相似文献   
993.
A family of phenotypically and biologically different transplantable hamster melanomas was derived from a single tumor more than 40 yr ago. In this work, we were seeking the differences between the abilities of the cells from two biologically heterogeneous (melanotic and amelanotic) members of this family to undergo spontaneous or camptothecin-induced apoptosis. We studied these differences by looking at three important features of the apoptotic process, i.e. binding of annexin V, DNA fragmentation and caspase-3 activity. Of these, annexin binding and DNA fragmentation were more pronounced in the parental, melanotic line while the activity of caspase-3 was stronger in the amelanotic tumor cells. We concluded that a spontaneous alteration of the original, melanotic melanoma line into an amelanotic one, associated with more aggressive tumor progression, was accompanied by significant decrease in ability to undergo spontaneous and camptothecin-induced apoptosis, and that apoptosis of these two cell types may not depend on the activity of caspase-3.  相似文献   
994.
We analyzed the energetic importance of residues surrounding the hot spot (the P(1) position) of bovine pancreatic trypsin inhibitor (BPTI) in interaction with two proteinases, trypsin and chymotrypsin, by a procedure called molecular shaving. One to eight residues of the structural epitope, composed of two extended and exposed loops, were mutated to alanine(s). Although truncation of the side chains of residues surrounding the P(1) position to methyl groups caused a decrease in Delta G(den) values up to 6.4 kcal mole(-1), it did not influence the overall conformation of the inhibitor. We found that the replacement of up to six residues with alanines was fully additive at the level of protein stability. To analyze the influence of the structural epitope on the association energy, we determined association constants for BPTI variants and both enzymes and applied the additivity analysis. Shaving of two binding loops led to a progressive drop in the association energy, more pronounced for trypsin (decrease up to 9.6 kcal mole(-1)) than chymotrypsin (decrease up to 3.5 kcal mole(-1)). In the case of extensively mutated variants interacting with chymotrypsin, the association energies agreed very well with the values calculated from single mutational effects. However, when P(1)-neighboring residues were shaved to alanine(s), their contribution to the association energy was not fully removed because of the presence of methyl groups and main chain-main chain intermolecular hydrogen bonds. Moreover, the hot spot had a different contribution to the complex stability in the fully shaved BPTI variant compared with the wild type, which was caused by perturbations of the P(1)-S(1) electrostatic interaction.  相似文献   
995.
The following blastomeres were enlarged to the size of the zygote by one, two or three rounds of blastomere enucleation and electrofusion: (1) from the 2-cell stage (referred to as 2/1 embryos), (2) from the 4-cell stage (referred to as 4/1 embryos), (3) from the 8-cell stage (referred to as 8/1 embryos). Such single enlarged blastomeres developed into blastocysts in vivo in 55.5% (2/1), 28% (4/1) and 6.6% (8/1) of cases. Their mean cell numbers were 45.3, 24.5 and 13.0 in 2/1, 4/1 and 8/1 embryos, respectively. When a blastomere nucleus from another mouse strain (heterologous nucleus) was substituted for a blastomere's own (homologous) one, then fewer blastocysts were formed from 2/1 embryos (34.6%), but not from 4/1 and 8/1 embryos. Five young (10.4%) were born from 2/1 embryos with a homologous nucleus, and nine (8.3%) from 2/1 embryos with heterologous nuclei. Four young (7.1%) were born from 4/1 embryos with heterologous nuclei. No young were obtained from 8/1 embryos. Incorrect cavitation resulting in trophoblastic vesicles and false blastocyst formation was common in 4/1 embryos (18.7% of those with homologous nuclei and 41.3% with heterologous nuclei) and in 8/1 embryos (53.3% and 43.7%, respectively). The results show that neither enlargement to zygote size nor nucleo-cytoplasmic synchrony improve postimplantation development of 4- and 8-cell stage blastomeres when compared with less enlarged non-synchronous ones; therefore, it appears that an insufficient number of inner cell mass cells in blastocysts and not too small a size of isolated blastomeres precludes their postimplantation development.  相似文献   
996.
We have investigated the possibility that mitotic nuclei originating from preimplantation stage embryos and placed in the oocyte cytoplasm can undergo remodelling that allows them to undergo meiosis in the mouse. To address this question, we have used enucleated germinal vesicle (GV) ooplasts as recipients and blastomeres from the 2-, 4- or 8-cell stage as nuclear donors. We employed two methods to obtain ooplasts from GV oocytes: cutting and enucleation. Although efficiency of the reconstruction process was higher after enucleation than after cutting (90% and 70% respectively), the developmental potential of the oocytes was independent of how they had been produced. Nuclei from the 2-, 4-, or 8-cell stage embryos supported maturation in about 35%, 55% and 60% of cases, respectively. The time between nuclear envelope breakdown and the first meiotic division was shortened by up to 5 h in reconstructed oocytes, a period equivalent to the mitotic division of control blastomeres. About one-third of oocytes reconstituted with blastomere nuclei divided symmetrically instead of extruding a polar body; however, in the majority of them metaphase plates were found, suggesting that reconstructed oocytes (cybrids) underwent a meiotic rather than mitotic division. The highest percentage of asymmetric divisions accompanied by metaphase plates was found in cybrids with 8-cell-stage blastomere nuclei, suggesting that the nuclei from this stage appear to conform best to the cytoplasmic environment of GV ooplasts. Our results indicate that the oocyte cytoplasm is capable of remodelling blastomere nuclei, allowing them to follow the path of the meiotic cell cycle.  相似文献   
997.
Tubulin glycylation is a posttranslational modification found in cells with cilia or flagella. The ciliate Tetrahymena has glycylation on ciliary and cortical microtubules. We showed previously that mutating three glycylation sites on beta-tubulin produces immotile 9 + 0 axonemes and inhibits cytokinesis. Here, we use an inducible glycylation domain mutation and epitope tagging to evaluate the potential of glycylation-deficient tubulin for assembly and maintenance of microtubular systems. In axonemes, the major defects, including lack of the central pair, occurred during assembly, and newly made cilia were abnormally short. The glycylation domain also was required for maintenance of the length of already assembled cilia. In contrast to the aberrant assembly of cilia, several types of cortical organelles showed an abnormally high number of microtubules in the same mutant cells. Thus, the consequences of deficiency in tubulin glycylation are organelle type specific and lead to either insufficient assembly (cilia) or excessive assembly (basal bodies and cortical microtubules). We suggest that the diverse functions of the beta-tubulin glycylation domain are executed by spatially restricted microtubule-associated proteins.  相似文献   
998.
In the last few years mass spectrometry has become the method of choice for characterization of post-translationally modified proteins. Whereas most protein chemical modifications are binary in the sense that only one change can be associated with a given residue, many different oligosaccharides can be attached to a glycosylation site residue. The detailed characterization of glycoproteins in complex biological samples is extremely challenging. However, information on N-glycosylation can be gained at an intermediary level. Here we demonstrate a procedure for mapping N-glycosylation sites in complex mixtures by reducing sample complexity and enriching glycoprotein content. Glycosylated proteins are selected by an initial lectin chromatography step and digested with endoproteinase Lys-C. Glycosylated peptides are then selected from the digest mixture by a second lectin chromatography step. The glycan components are removed with N-glycosidase F and the peptides digested with trypsin before analysis by on-line reversed-phase liquid chromatography mass spectrometry. Using two different lectins, concanavalin A and wheat germ agglutinin, this procedure was applied to human serum and a total of 86 N-glycosylation sites in 77 proteins were identified.  相似文献   
999.
Cystic fibrosis as a cause of infertility   总被引:2,自引:0,他引:2  
Cystic fibrosis (CF) is one of the autosomal recessive diseases, caused by mutations in a gene known as cystic fibrosis transmembrane regulator (CFTR). The majority of adult males with CF (99%) is characterized by congenital bilateral absence of vas deferens (CBAVD). CBAVD is encountered in 1-2% of infertile males without CF. Females with CF are found to be less fertile than normal healthy women. In females with CF, delayed puberty and amenorrhoea are common due to malnutrition. CFTR mutations are also associated with congenital absence of the uterus and vagina (CAUV). The National Institutes of Health recommend genetic counseling for any couple seeking assisted reproductive techniques with a CF male or obstructive azoospermia which is positive for a CF mutation.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号