首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1074篇
  免费   97篇
  1171篇
  2023年   5篇
  2022年   4篇
  2021年   16篇
  2020年   7篇
  2019年   11篇
  2018年   8篇
  2017年   11篇
  2016年   22篇
  2015年   45篇
  2014年   63篇
  2013年   53篇
  2012年   77篇
  2011年   57篇
  2010年   42篇
  2009年   51篇
  2008年   78篇
  2007年   51篇
  2006年   53篇
  2005年   67篇
  2004年   63篇
  2003年   54篇
  2002年   54篇
  2001年   20篇
  2000年   15篇
  1999年   17篇
  1998年   16篇
  1997年   14篇
  1996年   11篇
  1995年   11篇
  1994年   17篇
  1993年   16篇
  1992年   11篇
  1991年   10篇
  1990年   7篇
  1989年   7篇
  1988年   13篇
  1987年   6篇
  1986年   7篇
  1984年   8篇
  1983年   6篇
  1982年   8篇
  1981年   3篇
  1980年   6篇
  1979年   9篇
  1978年   6篇
  1977年   7篇
  1976年   8篇
  1975年   4篇
  1974年   4篇
  1971年   4篇
排序方式: 共有1171条查询结果,搜索用时 15 毫秒
21.
Bloodstream form Trypanosoma theileri degrades glucose to acetate (47%) and succinate (45%) and, therefore, does not solely rely on glycolysis for ATP production. This trypanosomatid does not use amino acids for energy metabolism. These results refute the prevailing hypothesis that substrate availability determines the type of energy metabolism of trypanosomatids.  相似文献   
22.
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.  相似文献   
23.
Haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064 (DhaA) catalyzes the hydrolysis of carbon-halogen bonds in a wide range of haloalkanes. We examined the steady-state and pre-steady-state kinetics of halopropane conversion by DhaA to illuminate mechanistic details of the dehalogenation pathway. Steady-state kinetic analysis of DhaA with a range of halopropanes showed that bromopropanes had higher k(cat) and lower K(M) values than the chlorinated analogues. The kinetic mechanism of dehalogenation was further studied using rapid-quench-flow analysis of 1,3-dibromopropane conversion. This provided a direct measurement of the chemical steps in the reaction mechanism, i.e., cleavage of the carbon-halogen bond and hydrolysis of the covalent alkyl-enzyme intermediate. The results lead to a minimal mechanism consisting of four main steps. The occurrence of a pre-steady-state burst, both for bromide and 3-bromo-1-propanol, suggests that product release is rate-limiting under steady-state conditions. Combining pre-steady-state burst and single-turnover experiments indicated that the rate of carbon-bromine bond cleavage was indeed more than 100-fold higher than the steady-state k(cat). Product release occurred with a rate constant of 3.9 s(-1), a value close to the experimental k(cat) of 2.7 s(-1). Comparing the kinetic mechanism of DhaA with that of the corresponding enzyme from Xanthobacter autotrophicus GJ10 (DhlA) shows that the overall mechanisms are similar. However, whereas in DhlA the rate of halide release represents the slowest step in the catalytic cycle, our results suggest that in DhaA the release of 3-bromo-1-propanol is the slowest step during 1,3-dibromopropane conversion.  相似文献   
24.
To test phylogenetic relationships within the genus Testudo (Testudines: Testudinidae), we have sequenced a fragment of the mitochondrial (mt) 12S rRNA gene of 98 tortoise specimens belonging to the genera Testudo, Indotestudo, and Geochelone. Maximum likelihood and neighbor-joining methods identify two main clades of Mediterranean tortoises, one composed of the species Testudo graeca, Testudo marginata, and Testudo kleinmanni and a second of Testudo hermanni, Testudo horsfieldii, and Indotestudo elongata. The first clade, but not the second, was also supported by maximum parsimony analysis. Together with the genus Geochelone, a star-like radiation of these clades was suggested, as a sister-group relationship between the two Testudo clades could not be confirmed. The intraspecies genetic variation was examined by sequencing the mt 12S rRNA fragment from 28 specimens of T. graeca and 49 specimens of T. hermanni from various geographic locations. Haplotype diversity was found to be significantly larger in T. graeca compared with T. hermanni, suggestive of reduced genetic diversity in the latter species, perhaps due to Pleistocene glaciations affecting northern and middle Europe or other sources of lineage reduction. No ancient mt 12S rRNA gene haplotypes were identified in T. graeca and/or T. hermanni originating from islands in the Mediterranean Sea, suggesting that these islands harbor tortoise populations introduced from the European and African mainland.  相似文献   
25.
Mammalian endogenous circadian rhythms are entrained to the environmental day-night cycle by light exposure. Melatonin is involved in this entrainment by signaling the day-night information to the endogenous circadian pacemaker. Furthermore, melatonin is known to affect the circadian rhythm of body temperature directly. A striking property of the endogenous melatonin signal is its synthesis pattern, characterized by long-term elevated melatonin levels throughout the night. In the present study, the influence of prolonged treatment with the melatonin agonist S20098 during the activity phase of free-running rats was examined. This was achieved by giving S20098 in the food. The free-running body temperature and activity rhythms were studied. The present study shows that enhancement of the melatonin signal, using S20098, affected the free-running rhythm by gradual phase advances of the start of the activity phase, consequently causing an increase in length of the activity phase. A well-known feature of circadian rhythms is its time-dependent sensitivity for light. Light pulse exposure of an animal housed under continuous dark conditions can cause a phase shift of the circadian pacemaker. Therefore, in a second experiment, the influence of melatonin receptor stimulation on the sensitivity of the pacemaker to light was examined by giving the melatonin agonist S20098 in the food during 1 day prior to exposure to a 60-min light pulse of 0, 1.5, 15, or 150 lux given at circadian time (CT) 14. S20098 pretreatment caused a diminished lightpulse- induced phase shift when a light pulse of low light intensity (1.5 lux) was given. S20098 treatment via the food was sufficient to exert chronobiotic activity, and S20098 treatment resulting in prolonged overstimulation of melatonin receptors is able to attenuate the effect of light on the circadian timing system. (Chronobiology International, 18(5), 781-799, 2001)  相似文献   
26.
Glycerol dialkyl glycerol tetraethers (GDGTs) are core membrane lipids originally thought to be produced mainly by (hyper)thermophilic archaea. Environmental screening of low-temperature environments showed, however, the abundant presence of structurally diverse GDGTs from both bacterial and archaeal sources. In this study, we examined the occurrences and distribution of GDGTs in hot spring environments in Yellowstone National Park with high temperatures (47 to 83°C) and mostly neutral to alkaline pHs. GDGTs with 0 to 4 cyclopentane moieties were dominant in all samples and are likely derived from both (hyper)thermophilic Crenarchaeota and Euryarchaeota. GDGTs with 4 to 8 cyclopentane moieties, likely derived from the crenarchaeotal order Sulfolobales and the euryarchaeotal order Thermoplasmatales, are usually present in much lower abundance, consistent with the relatively high pH values of the hot springs. The relative abundances of cyclopentane-containing GDGTs did not correlate with in situ temperature and pH, suggesting that other environmental and possibly genetic factors play a role as well. Crenarchaeol, a biomarker thought to be specific for nonthermophilic group I Crenarchaeota, was also found in most hot springs, though in relatively low concentrations, i.e., <5% of total GDGTs. Its abundance did not correlate with temperature, as has been reported previously. Instead, the cooccurrence of relatively abundant nonisoprenoid GDGTs thought to be derived from soil bacteria suggests a predominantly allochthonous source for crenarchaeol in these hot spring environments. Finally, the distribution of bacterial branched GDGTs suggests that they may be derived from the geothermally heated soils surrounding the hot springs.  相似文献   
27.
28.
Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.Correspondence to: A.C. van der Kuyl  相似文献   
29.
Clonogenic assay or colony formation assay is an in vitro cell survival assay based on the ability of a single cell to grow into a colony. The colony is defined to consist of at least 50 cells. The assay essentially tests every cell in the population for its ability to undergo "unlimited" division. Clonogenic assay is the method of choice to determine cell reproductive death after treatment with ionizing radiation, but can also be used to determine the effectiveness of other cytotoxic agents. Only a fraction of seeded cells retains the capacity to produce colonies. Before or after treatment, cells are seeded out in appropriate dilutions to form colonies in 1-3 weeks. Colonies are fixed with glutaraldehyde (6.0% v/v), stained with crystal violet (0.5% w/v) and counted using a stereomicroscope. A method for the analysis of radiation dose-survival curves is included.  相似文献   
30.
Conventional bipolar EMG provides imprecise muscle activation estimates due to possibly heterogeneous activity within muscles and due to improper alignment of the electrodes with the muscle fibers. Principal component analysis (PCA), applied on multi-channel monopolar EMG yielded substantial improvements in muscle activation estimates in pennate muscles. We investigated the degree of heterogeneity in muscle activity and the contribution of PCA to muscle activation estimates in biceps brachii (BB), which has a relatively simply parallel-fibered architecture. EMG-based muscle activation estimates were assessed by comparison to elbow flexion forces in isometric, two-state isotonic contractions in eleven healthy male subjects. Monopolar EMG was collected over the entire surface of the BB with about 63 electrodes. Estimation quality of different combinations of EMG channels showed that heterogeneous activation was found mainly in medio-lateral direction, whereas adding channels in the longitudinal direction added largely redundant information. Multi-channel bipolar EMG amplitude improved muscle activation estimates by 5–14% as compared to a single bipolar. PCA-processed monopolar EMG amplitude yielded a further improvement of (12–22%). Thus multi-channel EMG, processed with PCA, substantially improves the quality of muscle activation estimates compared conventional bipolar EMG in BB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号