首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1016篇
  免费   92篇
  2023年   5篇
  2021年   14篇
  2020年   6篇
  2019年   8篇
  2018年   7篇
  2017年   7篇
  2016年   19篇
  2015年   42篇
  2014年   62篇
  2013年   50篇
  2012年   75篇
  2011年   55篇
  2010年   36篇
  2009年   51篇
  2008年   77篇
  2007年   50篇
  2006年   50篇
  2005年   67篇
  2004年   62篇
  2003年   52篇
  2002年   52篇
  2001年   15篇
  2000年   11篇
  1999年   16篇
  1998年   16篇
  1997年   12篇
  1996年   9篇
  1995年   11篇
  1994年   16篇
  1993年   15篇
  1992年   12篇
  1991年   13篇
  1990年   8篇
  1989年   6篇
  1988年   11篇
  1987年   7篇
  1986年   7篇
  1985年   2篇
  1984年   8篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1975年   3篇
  1974年   2篇
  1971年   3篇
排序方式: 共有1108条查询结果,搜索用时 15 毫秒
31.
Background aimsTo reduce the risk of graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (alloSCT), T-cell depletion (TCD) of grafts can be performed by the addition of alemtuzumab (ALT) “to the bag” (in vitro) before transplantation. In this prospective study, the authors analyzed the effect of in vitro incubation with 20 mg ALT on the composition of grafts prior to graft infusion. Furthermore, the authors assessed whether graft composition at the moment of infusion was predictive for T-cell reconstitution and development of GVHD early after TCD alloSCT.MethodsSixty granulocyte colony-stimulating factor-mobilized stem cell grafts were obtained from ≥9/10 HLA-matched related and unrelated donors. The composition of the grafts was analyzed by flow cytometry before and after in vitro incubation with ALT. T-cell reconstitution and incidence of severe GVHD were monitored until 12 weeks after transplantation.ResultsIn vitro incubation of grafts with 20 mg ALT resulted in an initial median depletion efficiency of T-cell receptor (TCR) α/β T cells of 96.7% (range, 63.5–99.8%), followed by subsequent depletion in vivo. Graft volumes and absolute leukocyte counts of grafts before the addition of ALT were not predictive for the efficiency of TCR α/β T-cell depletion. CD4pos T cells were depleted more efficiently than CD8pos T cells, and naive and regulatory T cells were depleted more efficiently than memory and effector T cells. This differential depletion of T-cell subsets was in line with their reported differential CD52 expression. In vitro depletion efficiencies and absolute numbers of (naive) TCR α/β T cells in the grafts after ALT incubation were not predictive for T-cell reconstitution or development of GVHD post- alloSCT.ConclusionsThe addition of ALT to the bag is an easy, fast and generally applicable strategy to prevent GVHD in patients receiving alloSCT after myeloablative or non-myeloablative conditioning because of the efficient differential depletion of donor-derived lymphocytes and T cells.  相似文献   
32.
Conventional bipolar EMG provides imprecise muscle activation estimates due to possibly heterogeneous activity within muscles and due to improper alignment of the electrodes with the muscle fibers. Principal component analysis (PCA), applied on multi-channel monopolar EMG yielded substantial improvements in muscle activation estimates in pennate muscles. We investigated the degree of heterogeneity in muscle activity and the contribution of PCA to muscle activation estimates in biceps brachii (BB), which has a relatively simply parallel-fibered architecture. EMG-based muscle activation estimates were assessed by comparison to elbow flexion forces in isometric, two-state isotonic contractions in eleven healthy male subjects. Monopolar EMG was collected over the entire surface of the BB with about 63 electrodes. Estimation quality of different combinations of EMG channels showed that heterogeneous activation was found mainly in medio-lateral direction, whereas adding channels in the longitudinal direction added largely redundant information. Multi-channel bipolar EMG amplitude improved muscle activation estimates by 5–14% as compared to a single bipolar. PCA-processed monopolar EMG amplitude yielded a further improvement of (12–22%). Thus multi-channel EMG, processed with PCA, substantially improves the quality of muscle activation estimates compared conventional bipolar EMG in BB.  相似文献   
33.
34.
Background aimsMesenchymal stromal cells (MSCs) are pluripotent cells that have immunosuppressive and reparative properties in vitro and in vivo. Although autologous bone marrow (BM)-derived MSCs are already clinically tested in transplant recipients, it is unclear whether these BM cells are affected by renal disease. We assessed whether renal failure affected the function and therapeutic potential of BM-MSCs.MethodsMSCs from 10 adults with end-stage renal disease (ESRD) and 10 age-matched healthy controls were expanded from BM aspirates and tested for phenotype and functionality in vitro.ResultsMSCs from ESRD patients were >90% positive for CD73, CD90 and CD105 and negative for CD34 and CD45 and showed a similar morphology and differentiation capacity as MSCs from healthy controls. Of importance for their clinical utility, growth characteristics were similar in both groups, and sufficient numbers of MSCs were obtained within 4 weeks. Messenger RNA expression levels of self-renewal genes and factors involved in repair and inflammation were also comparable between both groups. Likewise, microRNA expression profiling showed a broad overlap between ESRD and healthy donor MSCs. ESRD MSCs displayed the same immunosuppressive capacities as healthy control MSCs, demonstrated by a similar dose-dependent inhibition of peripheral blood mononuclear cell proliferation, similar inhibition of proinflammatory cytokines tumor necrosis factor-α and interferon-γ production and a concomitant increase in the production of interleukin-10.ConclusionsExpanded BM-MSCs procured from ESRD patients and healthy controls are both phenotypically and functionally similar. These findings are important for the potential autologous clinical application of BM-MSCs in transplant recipients.  相似文献   
35.
36.
The purpose of the current study was to investigate whether adaptations of stride length, stride frequency, and walking speed, independently influence local dynamic stability and the size of the medio-lateral and backward margins of stability during walking. Nine healthy subjects walked 25 trials on a treadmill at different combinations of stride frequency, stride length, and consequently at different walking speeds. Visual feedback about the required and the actual combination of stride frequency and stride length was given during the trials. Generalized Estimating Equations were used to investigate the independent contribution of stride length, stride frequency, and walking speed on the measures of gait stability. Increasing stride frequency was found to enhance medio-lateral margins of stability. Backward margins of stability became larger as stride length decreased or walking speed increased. For local dynamic stability no significant effects of stride frequency, stride length or walking speed were found. We conclude that adaptations in stride frequency, stride length and/or walking speed can result in an increase of the medio-lateral and backward margins of stability, while these adaptations do not seem to affect local dynamic stability. Gait training focusing on the observed stepping strategies to enhance margins of stability might be a useful contribution to programs aimed at fall prevention.  相似文献   
37.
Chronic kidney disease (CKD) is a global problem. Slowing CKD progression is a major health priority. Since CKD is characterized by complex derangements of homeostasis, integrative animal models are necessary to study development and progression of CKD. To study development of CKD and novel therapeutic interventions in CKD, we use the 5/6th nephrectomy ablation model, a well known experimental model of progressive renal disease, resembling several aspects of human CKD. The gross reduction in renal mass causes progressive glomerular and tubulo-interstitial injury, loss of remnant nephrons and development of systemic and glomerular hypertension. It is also associated with progressive intrarenal capillary loss, inflammation and glomerulosclerosis. Risk factors for CKD invariably impact on endothelial function. To mimic this, we combine removal of 5/6th of renal mass with nitric oxide (NO) depletion and a high salt diet. After arrival and acclimatization, animals receive a NO synthase inhibitor (NG-nitro-L-Arginine) (L-NNA) supplemented to drinking water (20 mg/L) for a period of 4 weeks, followed by right sided uninephrectomy. One week later, a subtotal nephrectomy (SNX) is performed on the left side. After SNX, animals are allowed to recover for two days followed by LNNA in drinking water (20 mg/L) for a further period of 4 weeks. A high salt diet (6%), supplemented in ground chow (see time line Figure 1), is continued throughout the experiment. Progression of renal failure is followed over time by measuring plasma urea, systolic blood pressure and proteinuria. By six weeks after SNX, renal failure has developed. Renal function is measured using ''gold standard'' inulin and para-amino hippuric acid (PAH) clearance technology. This model of CKD is characterized by a reduction in glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), hypertension (systolic blood pressure>150 mmHg), proteinuria (> 50 mg/24 hr) and mild uremia (>10 mM). Histological features include tubulo-interstitial damage reflected by inflammation, tubular atrophy and fibrosis and focal glomerulosclerosis leading to massive reduction of healthy glomeruli within the remnant population (<10%). Follow-up until 12 weeks after SNX shows further progression of CKD.  相似文献   
38.
Objective of this study was to examine the impact of executive function (EF) on mathematical and attention problems in very preterm (gestational age ≤ 30 weeks) children. Participants were 200 very preterm (mean age 8.2 ± 2.5 years) and 230 term children (mean age 8.3 ± 2.3 years) without severe disabilities, born between 1996 and 2004. EFs assessed included verbal fluency, verbal working memory, visuospatial span, planning, and impulse control. Mathematics was assessed with the Dutch Pupil Monitoring System and parents and teachers rated attention problems using standardized behavior questionnaires. The impact of EF was calculated over and above processing speed indices and IQ. Interactions with group (very preterm versus term birth status) were examined. Analyses were conducted separately for two subsamples: children in preschool and children in primary school. Very preterm children performed poorer on tests for mathematics and had more parent and teacher rated attention problems than term controls (ßs>.11, Ps<.01). IQ contributed unique variance to mathematics in preschool and in primary school (ßs>.16, Ps<.007). A significant interaction of group with IQ (ß = −. 24, P = .02) showed that IQ contributed unique variance to attention problems as rated by teachers, but that effects were stronger for very preterm than for term infants. Over and above IQ, EF contributed unique variance to mathematics in primary school (ß = .13, P<.001), to parent rated inattention in preschool and in primary school (ßs>−.16, Ps<.04), and to teacher rated inattention in primary school (ß = −.19; ß = .19, Ps<.009). In conclusion, impaired EF is, over and above impaired IQ, an important predictor for poor mathematics and attention problems following very preterm birth.  相似文献   
39.
Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins.Resistance (R) proteins play a central role in the recognition-based immune system of plants. Unlike vertebrates, plants lack an adaptive immune system with highly specialized immune cells. Instead, they rely on an innate immune system in which each cell is autonomous. Two types of immune receptors can be distinguished in plants, pathogen-associated molecular patterns recognition receptors that detect conserved molecular patterns in plant pathogens and intracellular R proteins that recognize specific effectors employed by pathogens as modifiers of host metabolism or defense mechanisms (Jones and Dangl, 2006). Effector-triggered activation of R proteins leads to an array of protective responses, often culminating in programmed cell death at the site of infection (Greenberg and Yao, 2004), thereby preventing further ingress of the pathogen. Pathogens have evolved mechanisms to evade recognition by R proteins and to regain their virulence (Dodds and Rathjen, 2010). This continuous coevolutionary process between host and pathogen has resulted in a reservoir of highly diverse R proteins in plants, enabling them to counteract a wide range of pathogens and pests.The most common class of R proteins consists of nucleotide-binding (NB)-leucine-rich repeat (LRR) proteins with a tripartite domain architecture, which roughly corresponds to an N-terminal response domain (a coiled coil [CC] or Toll/Interleukin-1 receptor [TIR] domain) involved in downstream signaling, a central molecular switch domain (the NB domain present in the mammalian apoptosis regulator Apaf1, plant R proteins, and the Caenorhabditis elegans apoptosis regulator CED4 [NB-ARC]), and a C-terminal sensor domain (the LRR domain). The NB-ARC domain is an extended nucleotide-binding domain that plant immune receptors share with metazoan apoptosis regulators and immune receptors such as Apaf1, CED4, and nucleotide-binding oligomerization domain (NOD-like) receptors (NLRs) and belongs to the STAND (signal transduction ATPases with numerous domains) family of nucleoside triphosphatase domains (van der Biezen and Jones, 1998; Leipe et al., 2004; Albrecht and Takken, 2006; Maekawa et al., 2011b). The overall modular architecture of metazoan STAND nucleoside triphosphatase is similar to that of NB-LRR plant immune receptors, but the domains flanking the NB-ARC domain often differ. In NLRs, for example, several N-terminal domains can be found, including caspase-recruiting domains and Pyrin domains (Proell et al., 2008). In the mammalian protein Apaf1, the sensor involved in cytochrome c detection consists of C-terminal WD40 repeats (Zou et al., 1997).In plant NB-LRR resistance proteins, the recognition of a pathogen effector via the LRR domain is thought to switch the conformation of the protein from a closed, autoinhibited “off” state into an open, active “on” state (Lukasik and Takken, 2009). The activation of NB-LRR proteins is most likely a multistep process in which the NB-ARC domain plays a central role. The three subdomains of the NB-ARC, the NB, ARC1, and ARC2, collectively form a nucleotide-binding pocket that adopts different conformations depending on the bound nucleotide. This mechanism seems to be conserved between proteins from organisms as distant as bacteria, metazoans, and plants (Rairdan and Moffett, 2007; Danot et al., 2009; Takken and Tameling, 2009). The conformational change coincides with the exchange of bound ADP for ATP in the NB-ARC, probably stabilizing the active conformation (Tameling et al., 2006; Ade et al., 2007). Hydrolysis of the bound ATP is hypothesized to return the domains to their inactive state. The exact mechanism by which elicitor recognition via the LRR leads to a conformational change of the NB-ARC and the subsequent activation of immune signaling pathways is not clear.Previous studies have shown that the CC/TIR, NB-ARC, and LRR domains in plant immune receptors interact and cooperate with each other in an interdependent manner (Moffett et al., 2002; Leister et al., 2005; Ade et al., 2007; Rairdan et al., 2008). From these data, a picture emerges in which the LRR domain is not only involved in pathogen recognition, but also plays a role in maintaining an autoinhibited resting state in the absence of pathogens via its interactions with the other domains (Bendahmane et al., 2002; Hwang and Williamson, 2003; Ade et al., 2007; Qi et al., 2012). A similar role as regulatory domain has been found for the sensor domains of other NLRs, such as the mammalian Apaf1 (Hu et al., 1998). For the potato (Solanum tuberosum) immune receptor Rx1, a model plant NB-LRR protein, it has been shown that the LRR cooperates with the ARC subdomains in retaining the inactive state of the protein. The deletion of the ARC and LRR domains leads to a constitutive activity of the NB (Bendahmane et al., 2002; Rairdan et al., 2008). In addition, it was demonstrated that the elicitor, the Potato virus X (PVX) coat protein, modifies the interdomain interactions in Rx1 (Moffett et al., 2002; Rairdan et al., 2008). Sequence exchanges between Rx1 and the highly homologous nematode resistance protein Gpa2 (88% amino acid identity) resulted in incompatibilities between the domains that give rise to inappropriate activation of cell death responses (Rairdan and Moffett, 2006), indicating that the cooperation between the sensor and switch domains depends on an interaction fine tuned by intramolecular coevolution. In this light, it is interesting to note that a functional ortholog of Rx1, Rx2 from Solanum acaule, is almost identical to Rx1 in its LRR region but displays a higher similarity to Gpa2 in stretches of its CC-NB-ARC sequence (Bendahmane et al., 2000).The aim of our study was to pinpoint the molecular determinants controlling the switch between the resting and activation state of NB-LRR proteins. The incompatibility between the ARC and LRR domains of Rx1 and Gpa2 was used as a guideline to dissect the molecular and structural determinants involved in the cooperation between the switch (NB-ARC) and sensor (LRR) domain. An extensive exchange of polymorphic residues between these two homologous NB-LRR proteins resulted in the identification of a minimal fragment of 68 amino acid residues in the ARC2 domain and the first LRR repeats as being crucial for proper activation of Gpa2 and Rx1. Within this minimal region, we identified two amino acids that, despite their proximity in the amino acid sequence, differentiate between elicitor-dependent (position 401) and independent activation (position 403). However, structural modeling of the domains shows that the residue at position 403 operates at the interface of the ARC2 and N-terminal part of the LRR domain, while residue 401 mapped at the interface between the ARC2 and NB domain. Furthermore, an acidic loop region in the ARC2 domain and complementary-charged basic patches in the N-terminal half of the LRR domain are shown to be required for the physical interaction between these domains. We demonstrate that the binding between the CC- NB-ARC and LRR domains is disrupted upon elicitor-dependent activation and that the complementary-charged residues are predicted to facilitate reassociation. Two independent docking simulations of the NB-ARC and LRR domain indicate that the LRR domain binds to the NB-ARC domain at the surface formed by the interaction of the ARC2 and NB subdomains. We present a mechanistic model in which the first repeats of the LRR, the ARC2 subdomain, and the NB form a clamp, which governs the shuttling between a closed, autoinhibited “off” state and an open, active “on” state of the resistance protein. Finally, we discuss the consequences of the functional constraints imposed by the interface of the NB, ARC2, and LRR domain for the generation of novel resistance specificities via evolutionary processes and genetic engineering.  相似文献   
40.

Background and Aims

The proportion of serum carnosinase (CN-1) recognized by RYSK173 monoclonal antibody negatively correlates with CN-1 activity. We thus hypothesized that the epitope recognized by RYSK173 is accessible only in a catalytically incompetent conformation of the zinc dependent enzyme and we mapped its position in the CN-1 structure. Since patients with kidney failure are often deficient in zinc and other trace elements we also assessed the RYSK173 CN-1 proportion in serum of these patients and studied the influence of hemodialysis hereon in relation to Zn2+ and Cu2+ concentration during hemodialysis.

Methods and Results

Epitope mapping using myc-tagged CN-1 fragments and overlapping peptides revealed that the RYSK173 epitope directly contributes to the formation of the dinuclear Zn center in the catalytic domain of homodimeric CN-1. Binding of RYSK173 to CN-1 was however not influenced by addition of Zn2+ or Cu2+ to serum. In serum of healthy controls the proportion of CN-1 recognized by RYSK173 was significantly lower compared to end-stage renal disease (ESRD) patients (1.12 ± 0.17 vs. 1.56 ± 0.40% of total CN-1; p<0.001). During hemodialysis the relative proportion of RYSK173 CN-1 decreased in parallel with increased serum Zn2+ and Cu2+ concentrations after dialysis.

Conclusions

Our study clearly indicates that RYSK173 recognizes a sequence within the transition metal binding site of CN-1, thus supporting our hypothesis that metal binding to CN-1 masks the epitope. The CN-1 RYSK173 proportion appears overall increased in ESRD patients, yet it decreases during hemodialysis possibly as a consequence of a relative increase in transition metal bound enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号