首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110525篇
  免费   8457篇
  国内免费   6967篇
  125949篇
  2024年   215篇
  2023年   1451篇
  2022年   3239篇
  2021年   5476篇
  2020年   3578篇
  2019年   4374篇
  2018年   4353篇
  2017年   3229篇
  2016年   4599篇
  2015年   6677篇
  2014年   7863篇
  2013年   8314篇
  2012年   9960篇
  2011年   8868篇
  2010年   5444篇
  2009年   4746篇
  2008年   5585篇
  2007年   4923篇
  2006年   4370篇
  2005年   3331篇
  2004年   2933篇
  2003年   2531篇
  2002年   2205篇
  2001年   2001篇
  2000年   1860篇
  1999年   1841篇
  1998年   1014篇
  1997年   1137篇
  1996年   1017篇
  1995年   919篇
  1994年   942篇
  1993年   666篇
  1992年   993篇
  1991年   838篇
  1990年   613篇
  1989年   559篇
  1988年   485篇
  1987年   411篇
  1986年   388篇
  1985年   390篇
  1984年   211篇
  1983年   197篇
  1982年   137篇
  1981年   114篇
  1980年   107篇
  1979年   115篇
  1978年   78篇
  1977年   60篇
  1974年   74篇
  1972年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
963.
964.
A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (p<0.05) higher average FPAase activities than those strains integrated with celB gene and with celD gene. Through the assessment of cellulosic lipids accumulating abilities, celA transformant A2-2 and celC transformant D1-B1 were isolated as promising candidates, which could yield 101%–133% and 35.22%–59.57% higher amount of lipids than the reference strain A-4 (WT) under submerged (SmF) conditions and solid-state (SSF) conditions, respectively. Variability in metabolism associated to the introduction of cellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass.  相似文献   
965.
Necroptosis is mediated by a signaling complex called necrosome, containing receptor-interacting protein (RIP)1, RIP3, and mixed-lineage kinase domain-like (MLKL). It is known that RIP1 and RIP3 form heterodimeric filamentous scaffold in necrosomes through their RIP homotypic interaction motif (RHIM) domain-mediated oligomerization, but the signaling events based on this scaffold has not been fully addressed. By using inducible dimer systems we found that RIP1–RIP1 interaction is dispensable for necroptosis; RIP1–RIP3 interaction is required for necroptosis signaling, but there is no necroptosis if no additional RIP3 protein is recruited to the RIP1–RIP3 heterodimer, and the interaction with RIP1 promotes the RIP3 to recruit other RIP3; RIP3–RIP3 interaction is required for necroptosis and RIP3–RIP3 dimerization is sufficient to induce necroptosis; and RIP3 dimer-induced necroptosis requires MLKL. We further show that RIP3 oligomer is not more potent than RIP3 dimer in triggering necroptosis, suggesting that RIP3 homo-interaction in the complex, rather than whether RIP3 has formed homo polymer, is important for necroptosis. RIP3 dimerization leads to RIP3 intramolecule autophosphorylation, which is required for the recruitment of MLKL. Interestingly, phosphorylation of one of RIP3 in the dimer is sufficient to induce necroptosis. As RIP1–RIP3 heterodimer itself cannot induce necroptosis, the RIP1–RIP3 heterodimeric amyloid fibril is unlikely to directly propagate necroptosis. We propose that the signaling events after the RIP1–RIP3 amyloid complex assembly are the recruitment of free RIP3 by the RIP3 in the amyloid scaffold followed by autophosphorylation of RIP3 and subsequent recruitment of MLKL by RIP3 to execute necroptosis.Necroptosis is a type of programmed necrosis characterized by necrotic morphological changes, including cellular organelle swelling, cell membrane rupture,1, 2, 3 and dependence of receptor-interacting protein (RIP)14 and RIP3.5, 6, 7 Physiological function of necroptosis has been illustrated in host defense,8, 9, 10, 11 inflammation,12, 13, 14, 15, 16 tissue injury,10, 17, 18 and development.19, 20, 21Necroptosis can be induced by a number of different extracellular stimuli such as tumor necrosis factor (TNF). TNF stimulation leads to formation of TNF receptor 1 (TNFR1) signaling complex (named complex I), and complex II containing RIP1, TRADD, FAS-associated protein with a death domain (FADD), and caspase-8, of which the activation initiates apoptosis. If cells have high level of RIP3, RIP1 recruits RIP3 to form necrosome containing FADD,22, 23, 24 caspase-8, RIP1, and RIP3, and the cells undergo necroptosis.25, 26 Caspase-8 and FADD negatively regulates necroptosis,27, 28, 29, 30 because RIP1, RIP3, and CYLD are potential substrates of caspase-8.31, 32, 33, 34 Necrosome also suppresses apoptosis but the underlying mechanism has not been described yet. Mixed-lineage kinase domain-like (MLKL) is downstream of RIP3,35, 36 and phosphorylation of MLKL is required for necroptosis.37, 38, 39, 40, 41, 42Apoptosis inducing complex (complex II) and necrosome are both supramolecular complexes.43, 44, 45 A recent study showed that RIP1 and RIP3 form amyloidal fibrils through their RIP homotypic interaction motif46 (RHIM)-mediated polymerization, and suggested that amyloidal structure is essential for necroptosis signaling.47 The RIP1–RIP3 heterodimeric amyloid complex is believed to function as a scaffold that brings signaling proteins into proximity to permit their activation. However, RIP1 and RIP3 also can each form fibrils on their own RHIM domains in vitro. It is unclear how the homo- and hetero-interactions are coordinated and organized on the amyloid scaffold to execute their functions in necroptosis. Here, we used inducible dimerization systems to study the roles of RIP1–RIP1, RIP1–RIP3, and RIP3–RIP3 interactions in necroptosis signaling. Our data suggested that it is the RIP1–RIP3 interaction in the RIP1–RIP3 heterodimeric amyloid complex that empowers to recruit other free RIP3; homodimerization of RIP3 triggers its autophosphorylation and only the phosphorylated RIP3 can recruit MLKL to execute necroptosis.  相似文献   
966.
Lapatinib, a tyrosine kinase inhibitor, is used in the treatment of advanced or metastatic breast cancer overexpressing human epidermal receptor 2 (HER2). Lapatinib can modulate the function of ATP-binding cassette (ABC) transporters (ABCB1 and ABCG2), which are the major mechanism responsible for multidrug resistance (MDR) in cancer. In this study, we investigated the effect of lapatinib on multidrug resistance–associated protein 1 (MRP1 [ABCC1]), MRP2 (ABCC2), MRP4 (ABCC4) and lung relative resistance protein (LRP) drug efflux pumps. We demonstrated that lapatinib could enhance the efficacy of conventional chemotherapeutic agents in MRP1-overexpressing cells in vitro and in vivo, but no effect in MRP2-, MPR4- and LRP-overexpressing cells. Furthermore, lapatinib significantly increased the accumulation of rhodamine 123 (Rho123) and doxorubicin (DOX) in MRP1-overexpressing cells. However, lapatinib did not alter the protein or mRNA expression levels of MRP1. Further studies showed that the level of phosphorylation of AKT and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) were not altered at the indicated concentrations of lapatinib. In conclusion, lapatinib enhanced the efficacy of conventional chemotherapeutic agents in MRP1-overexpressing cells by inhibiting MRP1 transport function without altering the level of AKT or ERK1/2 phosphorylation. These findings will encourage the clinical research of lapatinib combined with conventional chemotherapeutic drugs in MRP1-overexpressing cancer patients.  相似文献   
967.
Our previous study showed that the Autographa californicaNucleopolyhedrovirus (AcMNPV) ac76 gene is essential for both budded virion (BV) and occlusion-derived virion (ODV) development. More importantly, deletion of ac76 affects intranuclear microvesicle formation. However, the exact role by which ac76 affects virion morphogenesis remains unknown. In this report, we characterized the expression, distribution, and topology of Ac76 to further understand the functional role of Ac76 in virion morphogenesis. Ac76 contains an α-helical transmembrane domain, and phase separation showed that it was an integral membrane protein. In AcMNPV-infected cells, Ac76 was detected as a stable dimer that was resistant to SDS and thermal denaturation, and only a trace amount of monomer was detected. A coimmunoprecipitation assay demonstrated the dimerization of Ac76 by high-affinity self-association. Western blot analyses of purified virions and their nucleocapsid and envelope fractions showed that Ac76 was associated with the envelope fractions of both BVs and ODVs. Immunoelectron microscopy revealed that Ac76 was localized to the plasma membrane, endoplasmic reticulum (ER), nuclear membrane, intranuclear microvesicles, and ODV envelope. Amino acids 15 to 48 of Ac76 were identified as an atypical inner nuclear membrane-sorting motif because it was sufficient to target fusion proteins to the ER and nuclear membrane in the absence of viral infection and to the intranuclear microvesicles and ODV envelope during infection. Topology analysis of Ac76 by selective permeabilization showed that Ac76 was a type II integral membrane protein with an N terminus exposed to the cytosol and a C terminus hidden in the ER lumen.  相似文献   
968.
969.
We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ70-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe–S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation.  相似文献   
970.
Sequence-based protein homology detection has been extensively studied and so far the most sensitive method is based upon comparison of protein sequence profiles, which are derived from multiple sequence alignment (MSA) of sequence homologs in a protein family. A sequence profile is usually represented as a position-specific scoring matrix (PSSM) or an HMM (Hidden Markov Model) and accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This paper presents a new homology detection method MRFalign, consisting of three key components: 1) a Markov Random Fields (MRF) representation of a protein family; 2) a scoring function measuring similarity of two MRFs; and 3) an efficient ADMM (Alternating Direction Method of Multipliers) algorithm aligning two MRFs. Compared to HMM that can only model very short-range residue correlation, MRFs can model long-range residue interaction pattern and thus, encode information for the global 3D structure of a protein family. Consequently, MRF-MRF comparison for remote homology detection shall be much more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that MRFalign outperforms several popular HMM or PSSM-based methods in terms of both alignment accuracy and remote homology detection and that MRFalign works particularly well for mainly beta proteins. For example, tested on the benchmark SCOP40 (8353 proteins) for homology detection, PSSM-PSSM and HMM-HMM succeed on 48% and 52% of proteins, respectively, at superfamily level, and on 15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign succeeds on 57.3% and 42.5% of proteins at superfamily and fold level, respectively. This study implies that long-range residue interaction patterns are very helpful for sequence-based homology detection. The software is available for download at http://raptorx.uchicago.edu/download/. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2–5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号