首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   17篇
  2018年   1篇
  2017年   5篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   13篇
  2010年   4篇
  2009年   6篇
  2008年   8篇
  2007年   6篇
  2006年   5篇
  2005年   5篇
  2004年   7篇
  2003年   9篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1981年   2篇
  1977年   3篇
  1975年   2篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
71.
72.
While protein kinases are key components in multiple cellular processes, efficient identification of cognate in vivo substrates remains challenging. Here we describe a powerful method to screen potential substrates of protein kinases by partial transfer of proteins from a 2D-PAGE gel to a Western blot membrane. This approach allowed precise pinpointing of candidate substrate spots in the 2D gel, and identifying physiological substrates of protein kinases in Mycobacterium tuberculosis.  相似文献   
73.
This study investigated butanol fermentation using glucose and culture broth containing butyrate from the butyrate fermentation of a brown alga, Laminaria japonica. Prior to the use of the biologically-produced butyrate, the initial glucose in tryptone-yeast extract acetate (TYA) medium was first optimized for butanol fermentation using Clostridium saccharoperbutylacetonicum N1-4 ATCC 27021T. Then, a commercially-acquired (synthetic) butyrate was supplemented to the TYA medium containing the optimal glucose concentration (around 30 and 60 g/L). According to the experimental results, the highest butanol carbon yield (0.580 C-mol/C-mol) was obtained from the fermentation of 36.65 g/L glucose and 7.29 g/L synthetic butyrate. Fermentation of a similar amount of glucose (32.28 g/L) in the absence of butyrate gave a butanol carbon yield of 0.402 C-mol/C-mol. For the experiment with fermented butyrate, a 100 g/L biomass of brown alga was fermented by Clostridium tyrobutyricum ATCC 25755 and the culture broth containing butyrate was used to prepare TYA medium after removing the bacterial cells. Fermentation using the synthetic butyrate and the biologically-produced butyrate (4.95 g/L) gave a comparable butanol concentration (13.23 g/L) and butanol carbon yield (0.513 C-mol/C-mol). Overall, this study proved that the addition of fermented butyrate from brown alga fermentation could be an effective way to improve butanol production. Furthermore, the reuse of spent medium and the absence of rigorous purification of the broth containing butyrate would lower the production cost of the fermentation.  相似文献   
74.
Autophagy regulates cellular homeostasis through degradation of aged or damaged subcellular organelles and components. Interestingly, autophagy-deficient beta cells, for example Atg7-mutant mice, exhibited hypoinsulinemia and hyperglycemia. Also, autophagy response is diminished in heart of diabetic mice. These results implied that autophagy and diabetes are closely connected and affect each other. Although protein O-GlcNAcylation is up-regulated in hyperglycemia and diabetes, and O-GlcNAcylated proteins play an important role in metabolism and nutrient sensing, little is known whether autophagy affects O-GlcNAc modification and vice versa. In this study, we suppressed the action of mTOR by treatment of mTOR catalytic inhibitors (PP242 and Torin1) to induce autophagic flux. Results showed a decrease in global O-GlcNAcylation, which is due to decreased OGT protein and increased OGA protein. Interestingly, knockdown of ATG genes or blocking of lysosomal degradation enhanced protein stability of OGT. In addition, when proteasomal inhibitor was treated together with mTOR inhibitor, protein level of OGT almost recovered to control level. These data suggest that mTOR inhibition is a more efficient way to reduce protein level of OGT rather than that of CHX treatment. We also showed that not only proteasomal degradation regulated OGT stability but autophagic degradation also affected OGT stability in part. We concluded that mTOR signaling regulates protein O-GlcNAc modification through adjustment of OGT stability.  相似文献   
75.
Xue L  Jahng WJ  Gollapalli D  Rando RR 《Biochemistry》2006,45(35):10710-10718
Lecithin retinol acyl transferase (LRAT) has the essential role of catalyzing the transfer of an acyl group from the sn-1 position of lecithin to vitamin A to generate all-trans-retinyl esters (tREs). In vitro studies had shown previously that LRAT also can exchange palmitoyl groups between RPE65, a tRE binding protein essential for vision, and tREs. This exchange is likely to be of regulatory significance in the operation of the visual cycle. In the current study, the substrate specificity of LRAT is explored with palmitoylated amino acids and dipeptides as RPE65 surrogates. Both O- and S-substituted palmitoylated analogues are excellent substrates for tLRAT, a readily expressed and readily purified form of LRAT. Using vitamin A as the palmitoyl acceptor, tREs are readily formed. The cognate of these reactions occurs in crude retinal pigment epithelial (RPE) membranes as well. RPE membranes containing LRAT transfer palmitoyl groups from radiolabeled [1-(14)C]-l-alpha-dipalmitoyl diphosphatidylcholine (DPPC) to RPE65. Palmitoyl transfer is abolished by preincubation with a specific LRAT antagonist both in membranes and with purified tLRAT. These experiments are consistent with an expanded role for LRAT function as a protein palmitoyl transferase.  相似文献   
76.
The aim of this study was to evaluate whether citreorosein (CIT), a naturally occurring anthraquinone isolated from Polygoni cuspidati (P. cuspidati) radix, modulates degranulation and 5-lipoxygenase (5-LO)-dependent leukotriene C(4) (LTC(4)) generation in mast cells. Cit suppresses both degranulation and the generation of LTC(4) in a dose-dependent manner in stem cell factor (SCF)-mediated mouse bone marrow-derived mast cells (BMMCs). With regard to its molecular mechanism of action, we investigated the effects of CIT on intracellular signaling and mast cell activation employing BMMCs. Binding of SCF to c-Kit on mast cell membranes induced increases in intrinsic tyrosine kinase Syk activity and activation of multiple downstream events including phosphorylation of phospholipase Cγ (PLCγ), mobilization of intracellular Ca(2+), phosphatidylinositol 3-kinase (PI3K), Akt, MAP kinases (MAPKs), translocation of phospho-phospholipase A(2) (PLA(2)) and 5-LO. The results from the biochemical analysis demonstrate that CIT attenuates degranulation and LTC(4) generation through the suppression of multiple step signaling and would be beneficial for the prevention of allergic inflammation.  相似文献   
77.
78.
This study was conducted to determine if the stress-responsive hypothalamic-nucleus accumbens (NAc) regulation is a stressor specific event. Male SD rats were subjected to restraint or cold stress for 2 h, and then mRNA expression of corticotropin-releasing hormone (CRH) in the hypothalamic paraventricular nucleus (PVN) was examined by in situ hybridization and the plasma corticosterone levels by radioimmunoassay. Neuronal activations in the PVN and the NAc were examined by c-Fos immunohistochemistry and the brain GABA contents by HPLC. Both restraint and cold stresses increased c-Fos expression in the PVN and the plasma corticosterone; however, CRH expression in PVN was increased only by restraint, but not by cold, stress. Restraint stress significantly increased the NAc neuronal activation, but cold stress failed to do so. Restraint stress increased the NAc-GABA contents and cold stress did the hypothalamic GABA. Results suggest that the HPA axis regulation responding to restraint stress, but not cold stress, may involve the NAc neuronal activation in relation with GABAergic neurotransmission. Additionally, CRH expression in the PVN may not play a major role in the elevation of plasma corticosterone responding to cold stress.  相似文献   
79.
The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser22). Transient treatment of HCMV-infected cells with maribavir, an inhibitor of UL97 kinase activity, reduced lamin A/C phosphorylation by approximately 50%, consistent with UL97 directly phosphorylating lamin A/C during HCMV replication. Phosphorylation of lamin A/C during viral replication was accompanied by changes in the shape of the nucleus, as well as thinning, invaginations, and discrete breaks in the nuclear lamina, all of which required UL97 activity. As Ser22 is a phosphorylation site of particularly strong relevance for lamin A/C disassembly, our data support a model wherein viral mimicry of a mitotic host cell kinase activity promotes nuclear egress while accommodating viral arrest of the cell cycle.  相似文献   
80.
The forelimb digital flexors of the horse display remarkable diversity in muscle architecture despite each muscle-tendon unit having a similar mechanical advantage across the fetlock joint. We focus on two distinct muscles of the digital flexor system: short compartment deep digital flexor (DDF(sc)) and the superficial digital flexor (SDF). The objectives were to investigate force-length behavior and work performance of these two muscles in vivo during locomotion, and to determine how muscle architecture contributes to in vivo function in this system. We directly recorded muscle force (via tendon strain gauges) and muscle fascicle length (via sonomicrometry crystals) as horses walked (1.7 m s(-1)), trotted (4.1 m s(-1)) and cantered (7.0 m s(-1)) on a motorized treadmill. Over the range of gaits and speeds, DDF(sc) fascicles shortened while producing relatively low force, generating modest positive net work. In contrast, SDF fascicles initially shortened, then lengthened while producing high force, resulting in substantial negative net work. These findings suggest the long fibered, unipennate DDF(sc) supplements mechanical work during running, whereas the short fibered, multipennate SDF is specialized for economical high force and enhanced elastic energy storage. Apparent in vivo functions match well with the distinct architectural features of each muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号