首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   8篇
  国内免费   2篇
  125篇
  2021年   1篇
  2018年   4篇
  2017年   1篇
  2015年   6篇
  2014年   5篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   6篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   5篇
  1985年   1篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
  1975年   1篇
  1970年   1篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
71.
Lipid rafts are plasma membrane microdomains that are highly enriched with cholesterol and sphingolipids and in which various receptors and other proteins involved in signal transduction reside. In the present work, we analyzed the effect of cholesterol biosynthesis inhibition on lipid raft/caveolae composition and functionality and assessed whether sterol precursors of cholesterol could substitute for cholesterol in lipid rafts/caveolae. 3T3-L1 preadipocytes were treated with distal inhibitors of cholesterol biosynthesis or vehicle (control) and then membrane rafts were isolated by sucrose density gradient centrifugation. Inhibition of cholesterol biosynthesis with either SKF 104976, AY 9944, 5,22-cholestadien-3β-ol or triparanol, which inhibit different enzymes on the pathway, led to a marked reduction in cholesterol content and accumulation of different sterol intermediates in both lipid rafts and non-raft domains. These changes in sterol composition were accompanied by disruption of lipid rafts, with redistribution of caveolin-1 and Fyn, impairment of insulin-Akt signaling and the inhibition of insulin-stimulated glucose transport. Cholesterol repletion abrogated the effects of cholesterol biosynthesis inhibitors, reflecting they were specific. Our results show that cholesterol is required for functional raft-dependent insulin signaling.  相似文献   
72.
The influence of fructose 1,6-bisphosphate and L-alanine on the kinetics of pyruvate kinase (ATP:pyruvate O2-phosphotransferase, EC 2.7.1.40) from Phycomyces blakesleeanus NRRL 1555 (-) was studied at pH 7.5. By addition of fructose 1,6-bisphosphate the sigmoid kinetics with respect to phosphoenol pyruvate and Mg2+ were abolished and the velocity curves became hyperbolic. In the presence of L-alanine the positive homotropic cooperativity with respect to phosphoenol pyruvate increased with Hill coefficient values close to 4, while the sigmoid kinetics with respect to Mg2+ became hyperbolic. Fructose 1,6-bisphosphate overcomes the inhibition produced by L-alanine, the antagonism between phosphoenol pyruvate and L-alanine also being evident. Inhibition has been found at high Mg2+ concentrations, compatible with the binding of the magnesium ions to an inactive conformational state of the enzyme. The data were analysed on the basis of the two-states concerted-symmetry model of Monod, Wyman and Changeux, and the parameters of the model were calculated. Phosphoenol pyruvate and fructose 1,6-bisphosphate appeared to show exclusive binding to the active conformational state (R), whereas magnesium ions bind preferentially, by a factor of 45, to the R state. L-Alanine binds more readily to the inactive T state of the enzyme.  相似文献   
73.
The surface activity and interaction with lipid monolayers and bilayers of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine) have been studied. Edelfosine is a surface-active soluble amphiphile, with critical micellar concentrations at 3.5 μM and 19 μM in water. When the air-water interface is occupied by a phospholipid, edelfosine becomes inserted in the phospholipid monolayer, increasing surface pressure. This increase is dose-dependent, and reaches a plateau at ca. 2 μM edelfosine bulk concentration. The ether lipid can become inserted in phospholipid monolayers with initial surface pressures of up to 33 mN/m, which ensures its capacity to become inserted into cell membranes. Upon interaction with phospholipid vesicles, edelfosine exhibits a weak detergent activity, causing release of vesicle contents to a low extent (< 5%), and a small proportion of lipid solubilization. The weak detergent properties of edelfosine can be related to its very low critical micellar concentrations. Its high affinity for lipid monolayers combined with low lytic properties support the use of edelfosine as a clinical drug. The surface-active properties of edelfosine are similar to those of other “single-chain” lipids, e.g. lysophosphatidylcholine, palmitoylcarnitine, or N-acetylsphingosine.  相似文献   
74.
A set of different biophysical approaches has been used to explore the phase behavior of palmitoylsphingomyelin (pSM)/cholesterol (Chol) model membranes in the presence and absence of palmitoylceramide (pCer). Fluorescence spectroscopy of di-4-ANEPPDHQ-stained pSM/Chol vesicles and atomic force microscopy of supported planar bilayers show gel Lβ/liquid-ordered (Lo) phase coexistence within the range XChol = 0-0.25 at 22°C. At the latter compositional point and beyond, a single Lo pSM/Chol phase is detected. In ternary pSM/Chol/pCer mixtures, differential scanning calorimetry of multilamellar vesicles and confocal fluorescence microscopy of giant unilamellar vesicles concur in showing immiscibility, but no displacement, between Lo cholesterol-enriched (pSM/Chol) and gel-like ceramide-enriched (pSM/pCer) phases at high pSM/(Chol + pCer) ratios. At higher cholesterol content, pCer is unable to displace cholesterol at any extent, even at XChol < 0.25. It is interesting that an opposite strong cholesterol-mediated pCer displacement from its tight packing with pSM is clearly detected, completely abolishing the pCer ability to generate large microdomains and giving rise instead to a single ternary phase. These observations in model membranes in the absence of the lipids commonly used to form a liquid-disordered phase support the role of cholesterol as the key determinant in controlling its own displacement from Lo domains by ceramide upon sphingomyelinase activity.  相似文献   
75.
During and after insulin-induced hypoglycemia, changes in levels of cerebral phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidic acid (PA), triacylglycerol (TAG), diacylglycerol (DAG), and free fatty acids (FFAs) as well as the cerebral energy state were studied in relation to the EEG. In hypoglycemic rats with an EEG pattern of quasiperiodic sharp or slow sharp waves, which preceded the development of an isoelectric EEG, PIP2 levels increased significantly, together with a slight decrease in PI content. Levels of the other lipids did not change during this period. The cerebral energy state was affected only slightly in spite of profound decreases in plasma and tissue glucose levels. With 30 min of an isoelectric EEG, levels of all phosphoinositides and PA decreased significantly; total FFA and DAG contents increased seven- and twofold, respectively; the TAG-palmitate level decreased, and that of TAG-arachidonate increased. Plasma and tissue glucose were nearly depleted, and the cerebral energy state deteriorated severely. The increment in fatty acids in the DAG and FFA pools was less than their loss from phosphoinositides and PA, an observation suggesting vascular washout or oxidation of a portion of the FFAs produced. Following 90 min of glucose infusion, PIP and PA levels recovered to control values; however, the PIP2 content exceeded control levels, and that of PI remained below control levels. DAG and FFA contents returned to normal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
76.
This study was conducted to explore how the nature of the acyl chains of sphingomyelin (SM) influence its lateral distribution in the ternary lipid mixture SM/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), focusing on the importance of the hydrophobic part of the SM molecule for domain formation. Atomic force microscopy (AFM) measurements showed that the presence of a double bond in the 24:1 SM molecule in mixtures with cholesterol (CHO) or in pure bilayers led to a decrease in the molecular packing. Confocal microscopy and AFM showed, at the meso- and nanoscales respectively, that unlike 16:0 and 24:0 SM, 24:1 SM does not induce phase segregation in ternary lipid mixtures with DOPC and CHO. This ternary lipid mixture had a nanomechanical stability intermediate between those displayed by liquid-ordered (Lo) and liquid-disordered (Ld) phases, as reported by AFM force spectroscopy measurements, demonstrating that 24:1 SM is able to accommodate both DOPC and CHO, forming a single phase. Confocal experiments on giant unilamellar vesicles made of human, sheep, and rabbit erythrocyte ghosts rich in 24:1 SM and CHO, showed no lateral domain segregation. This study provides insights into how the specific molecular structure of SM affects the lateral behavior and the physical properties of both model and natural membranes. Specifically, the data suggest that unsaturated SM may help to keep membrane lipids in a homogeneous mixture rather than in separate domains.  相似文献   
77.
Ceramide produced from sphingomyelin in the plasma membrane is purported to affect signaling through changes in the membrane’s physical properties. Thermal behavior of N-palmitoyl sphingomyelin (PSM) and N-palmitoyl ceramide (PCer) mixtures in excess water has been monitored by 2H NMR spectroscopy and compared to differential scanning calorimetry (DSC) data. The alternate use of either perdeuterated or proton-based N-acyl chain PSM and PCer in our 2H NMR studies has allowed the separate observation of gel-fluid transitions in each lipid in the presence of the other one, and this in turn has provided direct information on the lipids’ miscibility over a wide temperature range. The results provide further evidence of the stabilization of the PSM gel state by PCer. Moreover, overlapping NMR and DSC data reveal that the DSC-signals parallel the melting of the major component (PSM) except at intermediate (20 and 30 mol %) fractions of PCer. In such cases, the DSC endotherm reports on the presumably highly cooperative melting of PCer. Up to at least 50 mol % PCer, PSM and PCer mix ideally in the liquid crystalline phase; in the gel phase, PCer becomes incorporated into PSM:PCer membranes with no evidence of pure solid PCer.  相似文献   
78.
1. An NAD-specific L(+)-lactate dehydrogenase (EC 1.1.1.27) from the mycelium of Phycomyces blakesleeanus N.R.R.L. 1555 (-) was purified approximately 700-fold. The enzyme has a molecular weight of 135,000-140,000. The purified enzyme gave a single, catalytically active, protein band after polyacrylamide-gel electrophoresis. It shows optimum activity between pH 6.7 and 7.5. 2. The Phycomyces blakesleeanus lactate dehydrogenase exhibits homotropic interactions with its substrate, pyruvate, and its coenzyme, NADH, at pH 7.5, indicating the existence of multiple binding sites in the enzyme for these ligands. 3. At pH 6.0, the enzyme shows high substrate inhibition by pyruvate. 3-hydroxypyruvate and 2-oxovalerate exhibit an analogous effect, whereas glyoxylate does not, when tested as substrates at the same pH. 4. At pH 7.5, ATP, which inhibits the enzyme, acts competitively with NADH and pyruvate, whereas at pH 6.0 and low concentrations of ATP it behaves in a allosteric manner as inhibitor with respect to NADH, GTP, however, has no effect under the same experimental conditions. 5. Partially purified enzyme from sporangiophores behaves in entirely similar kinetic manner as the one exhibited by the enzyme from mycelium.  相似文献   
79.
Lipid Peroxidation In Vivo Induced by Reversible Global Ischemia in Rat Brain   总被引:10,自引:8,他引:10  
It has been hypothesized that ischemia, followed by reperfusion, facilitates peroxidative free-radical chain processes in brain. To resolve this question, rats were subjected to reversible global ischemia. From coronal sections of brains frozen in situ, small (ca. 2 mg) amounts of tissue were sampled from neocortex, hippocampus, and thalamus of both cerebral hemispheres of four groups of rats exposed to 30 min cerebral ischemia followed by 0, 30, 60, and 240 min of reperfusion, and from a control group subjected to the same operative procedures, except for the induction of ischemia. Heptane-solubilized total lipid extracts from these samples were analyzed spectroscopically in the 190-330 nm range for content of isolated (nonconjugated) double bonds and of conjugated diene structures; the latter are formed from isolated double bonds during peroxidation of unsaturated fatty acids. Spectra derived from tissue regions of rats subjected to ischemia, or ischemia followed by reperfusion, were compared to averaged, region-specific control spectra and were normalized to the original content of isolated double bonds in the peroxidized samples. The resultant difference spectra were analyzed in terms of ratios of conjugated diene concentration to the concentration of isolated double bonds originally at risk in the specific tissue zones considered. The peak representing conjugated diene formation was centered at 238 +/- 1 nm and was usually well resolved when the molar ratio [conjugated diene]/[isolated double bonds], expressed as a percentage [( CD]/[IDB]), was greater than 0.25%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
80.
Abstract: To obtain direct evidence of oxygen radical activity in the course of cerebral ischemia under different intraischemic temperatures, we used a method based on the chemical trapping of hydroxyl radical in the form of the stable adducts 2,3- and 2,5-dihydroxybenzoic acid (DHBA) following salicylate administration. Wistar rats were subjected to 20 min of global forebrain ischemia by two-vessel occlusion plus systemic hypotension (50 mm Hg). Intraischemic striatal temperature was maintained as normothermic (37°C), hypothermic (30°C), or hyperthermic (39°C) but was held at 37°C before and following ischemia. Salicylate was administered either systemically (200 mg/kg, i.p.) or by continuous infusion (5 mM) through a microdialysis probe implanted in the striatum. Striatal extracellular fluid was sampled at regular intervals before, during, and after ischemia, and levels of 2,3- and 2,5-DHBA were assayed by HPLC with electrochemical detection. Following systemic administration of salicylate, stable baseline levels of 2,3- and 2,5-DHBA were observed before ischemia. During 20 min of normothermic ischemia, a 50% reduction in mean levels of both DHBAs was documented, suggesting a baseline level of hydroxyl radical that was diminished during ischemia, presumably owing to oxygen restriction to tissue at that time. During recirculation, 2,3- and 2,5-DHBA levels increased by 2.5- and 2.8-fold, respectively. Levels of 2,3-DHBA remained elevated during 1 h of reperfusion, whereas the increase in 2,5-DHBA levels persisted for 2 h. The increases in 2,3- and 2,5-DHBA levels observed following hyperthermic ischemia were significantly higher (3.8- and fivefold, respectively). In contrast, no significant changes in DHBA levels were observed following hypothermic ischemia. The postischemic changes in DHBA content observed following local administration of salicylate were comparable to the results obtained with systemic administration, thus confirming that the hydroxyl radicals arose within brain parenchyma itself. These results provide evidence that hydroxyl radical levels are increased during postischemic recirculation, and this process is modulated by intraischemic brain temperature. Hence, these data suggest a possible mechanism for the effects of temperature on ischemic outcome and support a key role for free radical-induced injury in the development of ischemic damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号