首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1998年   1篇
  1989年   1篇
  1972年   1篇
排序方式: 共有24条查询结果,搜索用时 296 毫秒
11.
Host breadth is often assumed to have no evolutionary significance in broad interactions because of the lack of cophylogenetic patterns between interacting species. Nonetheless, the breadth and suite of hosts utilized by one species may have adaptive value, particularly if it underlies a common ecological niche among hosts. Here, we present a preliminary assessment of the evolution of mycorrhizal specificity in 12 closely related orchid species (genera Goodyera and Hetaeria) using DNA‐based methods. We mapped specificity onto a plant phylogeny that we estimated to infer the evolutionary history of the mycorrhiza from the plant perspective, and hypothesized that phylogeny would explain a significant portion of the variance in specificity of plants on their host fungi. Sampled plants overwhelmingly associated with genus Ceratobasidium, but also occasionally with some ascomycetes. Ancestral mycorrhizal specificity was narrow in the orchids, and broadened rarely as Goodyera speciated. Statistical tests of phylogenetic inertia suggested some support for specificity varying with increasing phylogenetic distance, though only when the phylogenetic distance between suites of fungi interacting with each plant taxon were taken into account. These patterns suggest a role for phylogenetic conservatism in maintaining suits of fungal hosts among plants. We stress the evolutionary importance of host breadth in these organisms, and suggest that even generalists are likely to be constrained evolutionarily to maintaining associations with their symbionts.  相似文献   
12.
Azolla, a small water fern, abscises its roots and branches within 30 min upon treatment with various stresses. This study was conducted to test whether, in the rapid abscission that occurs in Azolla, breakdown of wall components of abscission zone cells by OH is involved. Experimentally generated OH caused the rapid separation of abscission zone cells from detached roots and the rapid shedding of roots from whole plants. Electron microscopic observations revealed that OH rapidly and selectively dissolved a well‐developed middle lamella between abscission zone cells and resultantly caused rapid cell separation and shedding. Treatment of abscission zones of Impatiens leaf petiole with OH also accelerated the separation of abscission zone cells. However, compared with that of Azolla roots, accelerative effects in Impatiens were weak. A large amount of OH was cytochemically detected in abscission zone cells both of Azolla roots and of Impatiens leaf petioles. These results suggest that OH is involved in the cell separation process not only in the rapid abscission in Azolla but also in the abscission of Impatiens. However, for rapid abscission to occur, a well‐developed middle lamella, a unique structure, which is sensitive to the attack of OH, might be needed.  相似文献   
13.
14.
Skunk vine, Paederia foetida (Rubiaceae), is native to Asia and has been recognized as an invasive weedy vine of natural areas in Florida and Hawaii. Two insects, Trachyaphthona sordida and Trachyaphthona nigrita (Coleoptera: Chrysomelidae) from Japan are being considered as potential biological control agents against skunk vine. To gather fundamental information on their biology, we carried out field surveys and laboratory experiments in Kyushu, southern Japan, between 2003 and 2006. We found that T. sordida is commonly distributed in Kyushu and T. nigrita is restricted to the southern parts of Kagoshima Prefecture on the southern part of Kyushu. These species are fundamentally univoltine and adults appear in late April to early July. Trachyaphthona sordida overwinters as mature larvae and T. nigrita as mature larvae or rarely as adults. Larvae of both species feed on fine roots of P. foetida in the field and Serissa foetida (Rubiaceae) under rearing conditions, and they appear to have tribe‐level host specificity in their host range. On the basis of these results, we suggest that both species are suitable as biological control agents.  相似文献   
15.
Left-handed Helical Polynucleotides with D-Sugar Phosphodiester Backbones   总被引:3,自引:0,他引:3  
Naturally occurring polynucleotides have right-handed helical confrontations in the solid state1 and in solution2. Poly(dI-dC)poly(dI-dC) was found to form a left-handed helix in spite of the D-sugar backbone. Also, L-adenylyl-(3′–5′)-L-adenosine synthesized by Tazawa et al4. takes up the left-handed stacked conformation. We had synthesized a dinucleoside monophosphate, 8,2′-anhydro-8-mercapto-9-β-D-arabinofuranosyladenine phosphoryl-(3′–5′)-8,2′-anhydro-8-mercapto-9-β-D-arabinofuranosyladenine (AspAs) (molecular structure Ia; see also ref. 5) and this compound has a left-handed stacked conformation. The two bases in Ia, having the D-sugar backbone, stacked along the left-handed helical axis; these bases are fixed at ?CN = ?108° (syn-anti region) by the anhydro linkages.  相似文献   
16.
In 2005, Quadrastichus erythrinae Kim, 2004 (Hymenoptera: Eulophidae), which induces stem, petiole, and leaf galls on Erythrina variegata L. (Fabaceae), was found on the following six islands in Okinawa Prefecture, Japan: Okinawa, Kume, Miyako, Ishigaki, Iriomote, and Hateruma. Galls were also found in Vietnam. In Japan, no further infestation records have been reported from any of Japan's other south‐western prefectures where Erythrina species grow. Because no Erythrina galls were observed in Okinawa Prefecture before 2005, Q. erythrinae seems to have invaded quite recently.  相似文献   
17.
Torymus celticolus Matsuo sp. nov. and Torymus celtidigalla Matsuo sp. nov. (Hymenoptera: Torymidae) are described as parasitoids of larvae of Celticecis japonica Yukawa & Tsuda, 1987 (Diptera: Cecidomyiidae) that induce leaf galls on Celtis species (Ulmaceae) in Japan. A key to species of the genus Torymus known in Japan is provided.  相似文献   
18.
A new genus Oxycephalomyia is described to contain the gall midge that was previously known as Asteralobia styraci (Shinji). Oxycephalomyia styraci, comb. nov., produces leaf vein galls on Styrax japonicus (Styracaceae). The adult of O. styraci is redescribed, and its full‐grown larva and pupa are described for the first time. The annual life cycle of the gall midge in northern Kyushu was clarified; the first instars overwinter in the galls on the host plant. However, the galls of O. styraci mature much later in the season than those of other gall midges with a similar life history pattern, and the durations of second and third larval instars are remarkably short. Such a life history pattern is considered to have an adaptive significance in avoiding larval parasitism, particularly by early attackers. The number of host axillary buds as oviposition sites decreased in bearing years and increased in off years, but there was no sign of oviposition site shortage even in bearing years, probably due to the low population density of the gall midge. An unidentified lepidopteran that feeds on galled and ungalled host buds and a Torymus sp. that attacks pupae of O. styraci were recognized as mortality factors of the gall midge.  相似文献   
19.
The plants of Kadsura longipedunculata (Schisandraceae) are monoecious and possess either red or yellow male flowers (the androecium), with yellow tepals, and yellow female flowers. All flower types simultaneously produce heat and floral odours (dominated by methyl butyrate) throughout a 4–5-h nocturnal period. The flowers are pollinated only by female, pollen-eating Megommata sp. (Cecidomyiidae). Pollen is the only reward, and female flowers use the same attractants as male flowers but offer no food (pollination by deceit). Open pollinated flowers in nature varied in fruit set from 8 to 92%. Megommata (subfamily Cecidomyiinae, supertribe Cecidomyiidi), consists of six described species, which feed on Coccoidea (scale insects) and are distributed worldwide.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 523–536.  相似文献   
20.
In theory, one factor determining the rate and nature of the assembly of island biotas is the presence or absence of stepping stone islands, yet no field studies have demonstrated stepping stone function in practice. Krakatau, in Sunda Strait, is about equidistant from Java and Sumatra. Sebesi lies about half way between Krakatau and Sumatra, but no island intervenes between Krakatau and the nearest coast of Java. We assess the evidence that Sebesi has acted as an important stepping stone for Krakatau's recolonization since the devastating 1883 volcanic eruption. About a quarter of Krakatau's resident land birds, two-fifths of its reptiles, bats and land molluscs, and about two-thirds of its termites, pteridophytes, butterflies and spermatophytes are unknown on Sebesi, evidently having colonized without stepping stone involvement. Identifiable Sumatran taxa do not outnumber identifiable Javan ones on Krakatau, nor do historical distribution records indicate movement from Sebesi to Krakatau in animal groups. Krakatau's biota is not a subset of Sebesi's in predominantly anemochorous or thallassochorous plant groups, butterflies, reptiles or bats, and is only marginally so in termites. It is a subset in predominantly zoochorous spermatophyte groups, except Ficus species, and in birds and land molluscs. Comparison with a weaker stepping stone candidate, Panaitan, provides no evidence for a stepping stone role for Sebesi in butterflies or termites. We discuss the dispersal and establishment constraints on colonization by the groups involved, and conclude that, overall, Sebesi had little impact as a stepping stone. Instead, it is more probable that divergence of the environments of the two islands has led to an increasingly independent recolonization of Krakatau.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 275–317.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号