首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   9篇
  国内免费   3篇
  2015年   5篇
  2014年   3篇
  2013年   11篇
  2012年   5篇
  2011年   15篇
  2010年   15篇
  2009年   13篇
  2008年   7篇
  2007年   10篇
  2006年   11篇
  2005年   4篇
  2003年   4篇
  2002年   5篇
  2000年   6篇
  1999年   3篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1989年   3篇
  1984年   4篇
  1983年   2篇
  1980年   2篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1972年   7篇
  1971年   4篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
  1960年   2篇
  1959年   6篇
  1958年   16篇
  1957年   14篇
  1956年   10篇
  1955年   16篇
  1954年   12篇
  1953年   8篇
  1952年   15篇
  1951年   8篇
  1950年   5篇
  1949年   6篇
  1948年   8篇
  1946年   3篇
排序方式: 共有333条查询结果,搜索用时 15 毫秒
171.
172.
173.
174.
175.
1. Ants establish mutualistic interactions involving a wide range of protective relationships (myrmecophily), in which they provide defence against enemies and partners provide food rewards and/or refuge. Although similar in the general outcome, myrmecophilic interactions differ in some characteristics such as quantity and quality of rewards offered by partners which may lead to different specialisation levels and, consequently, to different network properties. 2. The aim of this study was to identify structural patterns in myrmecophilic interaction networks, focusing on aspects related to specialisation: network modularity, nestedness and taxonomic relatedness of interaction ranges. To achieve this, a database of networks was compiled, including the following interactions: ants and domatia‐bearing plants (myrmecophytes); ants and extrafloral nectary‐bearing plants (EFNs); ants and floral nectary‐bearing plants (FNs); ants and Lepidoptera caterpillars; and ants and Hemiptera. 3. Myrmecophilic networks differed in their topology, with ant–myrmecophyte and ant–Lepidoptera networks being similar in their structural properties. A continuum was found, ranging from highly modular networks and phylogenetically structured interaction ranges in ant–myrmecophyte followed by ant–Lepidoptera networks to low modularity and taxonomically unrelated interaction ranges in ant–Hemiptera, EFN and FN networks. 4. These results suggest that different network topologies may be found across communities of species with similar interaction types, but also, that similar network topologies can be achieved through different mechanisms such as those between ants and myrmecophytes or Lepidoptera larvae. This study contributes to a generalisation of myrmecophilic network patterns and a better understanding of the relationship between specialisation and network topology.  相似文献   
176.
Peatland streams have repeatedly been shown to be highly supersaturated in both CO2 and CH4 with respect to the atmosphere, and in combination with dissolved (DOC) and particulate organic carbon (POC) represent a potentially important pathway for catchment greenhouse gas (GHG) and carbon (C) losses. The aim of this study was to create a complete C and GHG (CO2, CH4, N2O) budget for Auchencorth Moss, an ombrotrophic peatland in southern Scotland, by combining flux tower, static chamber and aquatic flux measurements from 2 consecutive years. The sink/source strength of the catchment in terms of both C and GHGs was compared to assess the relative importance of the aquatic pathway. During the study period (2007–2008) the catchment functioned as a net sink for GHGs (352 g CO2‐Eq m?2 yr?1) and C (69.5 g C m?2 yr?1). The greatest flux in both the GHG and C budget was net ecosystem exchange (NEE). Terrestrial emissions of CH4 and N2O combined returned only 4% of CO2 equivalents captured by NEE to the atmosphere, whereas evasion of GHGs from the stream surface returned 12%. DOC represented a loss of 24% of NEE C uptake, which if processed and evaded downstream, outside of the catchment, may lead to a significant underestimation of the actual catchment‐derived GHG losses. The budgets clearly show the importance of aquatic fluxes at Auchencorth Moss and highlight the need to consider both the C and GHG budgets simultaneously.  相似文献   
177.
The carbon budgets of the atmosphere and terrestrial ecosystems are closely coupled by vertical gas exchange fluxes. Uncertainties remain with respect to high latitude ecosystems and the processes driving their temporally and spatially highly variable methane (CH4) exchange. Problems associated with scaling plot measurements to larger areas in heterogeneous environments are addressed based on intensive field studies on two nested spatial scales in Northern Siberia. CH4 fluxes on the microsite scale (0.1–100 m2) were measured in the Lena River Delta from July through September 2006 by closed chambers and were compared with simultaneous ecosystem scale (104–106 m2) flux measurements by the eddy covariance (EC) method. Closed chamber measurements were conducted almost daily on 15 plots in four differently developed polygon centers and on a polygon rim. Controls on CH4 emission were identified by stepwise multiple regression. In contrast to relatively low ecosystem‐scale fluxes controlled mainly by near‐surface turbulence, fluxes on the microsite scale were almost an order of magnitude higher at the wet polygon centers and near zero at the drier polygon rim and high‐center polygon. Microsite scale CH4 fluxes varied strongly even within the same microsites. The only statistically significant control on chamber‐based fluxes was surface temperature calculated using the Stefan–Boltzmann equation in the wet polygon centers, whereas no significant control was found for the low emissions from the dry sites. The comparison with the EC measurements reveals differences in controls and the seasonal dynamics between the two measurement scales, which may have consequences for scaling and process‐based models. Despite those differences, closed chamber measurements from within the EC footprint could be scaled by an area‐weighting approach of landcover classes based on high‐resolution imagery to match the total ecosystem‐scale emission. Our nested sampling design allowed for checking scaling results against measurements and to identify potentially missed sources or sinks.  相似文献   
178.
Abstract: Body size is a common focus of macroevolutionary, macroecological and palaeontological investigations. Here, we document body‐size evolution in 19 species‐level ostracod lineages from the deep Indian Ocean (Deep Sea Drilling Program Site 253) over the past 40 myr. Body‐size trajectories vary across taxa and time intervals, but most lineages (16/19) show net gains in body size. Because many modern ostracod taxa are larger in colder parts of their geographical range, we compared the timing and magnitude of these size changes to established Cenozoic deep‐water cooling patterns confirmed through δ18O measurements of benthic foraminifera in the samples studied. These data show a significant negative correlation between size changes and temperature changes (ostracods get larger as temperatures get colder), and that systematic size increases only occur during intervals of sustained cooling. In addition, statistical support for an explicit temperature‐tracking model exceeds that of purely directional evolution. We argue that this Cope’s Rule pattern is driven by secular changes in the environment, rather than any universal or intrinsic advantages to larger body sizes, and we note some difficulties in the attempts to link Cope’s Rule to observations made within a single generation.  相似文献   
179.
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号