首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   7篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   8篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1966年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
11.
12.
The effect of pulvomycin on the biochemical and fluorescence spectroscopic properties of the archaeal elongation factor 1α from Sulfolobus solfataricus (SsEF-1α), the functional analog of eubacterial EF-Tu, was investigated. The antibiotic was able to reduce in vitro the rate of protein synthesis however, the concentration of pulvomycin leading to 50% inhibition (173 μM) was two order of magnitude higher but one order lower than that required in eubacteria and eukarya, respectively. The effect of the antibiotic on the partial reactions catalysed by SsEF-1α indicated that pulvomycin was able to decrease the affinity of the elongation factor toward aa-tRNA only in the presence of GTP, to an extent similar to that measured in the presence of GDP. Moreover, the antibiotic produced an increase of the intrinsic GTPase catalysed by SsEF-1α, but not that of its engineered forms. Finally, pulvomycin induced a variation in fluorescence spectrum of the aromatic region of the elongation factor and its truncated forms. These spectroscopic results suggested that a conformational change of the elongation factor takes place upon interaction with the antibiotic. This finding was confirmed by the protection against chemical denaturation of SsEF-1α, observed in the presence of pulvomycin. However, a stabilising effect of the antibiotic directly on the protein in the complex could takes place.  相似文献   
13.
The stability against chemical denaturants of the elongation factor EF-1alpha (SsEF-1alpha), a protein isolated from the hyperthermophilic archaeon Sulfolobus solfataricus has been characterized in detail. Indeed, the atypical shape of the protein structure and the unusual living conditions of the host organism prompted us to analyze the effect of urea and guanidine hydrochloride (GuHCl) on the GDP complex of the enzyme (SsEF-1alpha x GDP) by fluorescence and circular dichroism. These studies were also extended to the nucleotide-free form of the protein (nfSsEF-1alpha). Interestingly, the experiments show that the denaturation curves of both SsEF-1alpha forms present a single inflection point, which is indicative of a cooperative unfolding process with no intermediate species. Moreover, the chemically induced unfolding process of both SsEF-1alpha x GDP and nfSsEF-1alpha is fully reversible. Both SsEF-1alpha forms exhibit remarkable stability against urea, but they do not display a strong resistance to the denaturing action of GuHCl. These findings suggest that electrostatic interactions significantly contribute to SsEF-1alpha stability.  相似文献   
14.

Background

All viruses in the family Bunyaviridae possess a tripartite genome, consisting of a small, a medium, and a large RNA segment. Bunyaviruses therefore possess considerable evolutionary potential, attributable to both intramolecular changes and to genome segment reassortment. Hantaviruses (family Bunyaviridae, genus Hantavirus) are known to cause human hemorrhagic fever with renal syndrome or hantavirus pulmonary syndrome. The primary reservoir host of Sin Nombre virus is the deer mouse (Peromyscus maniculatus), which is widely distributed in North America. We investigated the prevalence of intramolecular changes and of genomic reassortment among Sin Nombre viruses detected in deer mice in three western states.

Methods

Portions of the Sin Nombre virus small (S) and medium (M) RNA segments were amplified by RT-PCR from kidney, lung, liver and spleen of seropositive peromyscine rodents, principally deer mice, collected in Colorado, New Mexico and Montana from 1995 to 2007. Both a 142 nucleotide (nt) amplicon of the M segment, encoding a portion of the G2 transmembrane glycoprotein, and a 751 nt amplicon of the S segment, encoding part of the nucleocapsid protein, were cloned and sequenced from 19 deer mice and from one brush mouse (P. boylii), S RNA but not M RNA from one deer mouse, and M RNA but not S RNA from another deer mouse.

Results

Two of 20 viruses were found to be reassortants. Within virus sequences from different rodents, the average rate of synonymous substitutions among all pair-wise comparisons (πs) was 0.378 in the M segment and 0.312 in the S segment sequences. The replacement substitution rate (πa) was 7.0 × 10-4 in the M segment and 17.3 × 10-4 in the S segment sequences. The low πa relative to πs suggests strong purifying selection and this was confirmed by a Fu and Li analysis. The absolute rate of molecular evolution of the M segment was 6.76 × 10-3 substitutions/site/year. The absolute age of the M segment tree was estimated to be 37 years. In the S segment the rate of molecular evolution was 1.93 × 10-3 substitutions/site/year and the absolute age of the tree was 106 years. Assuming that mice were infected with a single Sin Nombre virus genotype, phylogenetic analyses revealed that 10% (2/20) of viruses were reassortants, similar to the 14% (6/43) found in a previous report.

Conclusion

Age estimates from both segments suggest that Sin Nombre virus has evolved within the past 37–106 years. The rates of evolutionary changes reported here suggest that Sin Nombre virus M and S segment reassortment occurs frequently in nature.  相似文献   
15.

Background  

Gene selection is an important step when building predictors of disease state based on gene expression data. Gene selection generally improves performance and identifies a relevant subset of genes. Many univariate and multivariate gene selection approaches have been proposed. Frequently the claim is made that genes are co-regulated (due to pathway dependencies) and that multivariate approaches are therefore per definition more desirable than univariate selection approaches. Based on the published performances of all these approaches a fair comparison of the available results can not be made. This mainly stems from two factors. First, the results are often biased, since the validation set is in one way or another involved in training the predictor, resulting in optimistically biased performance estimates. Second, the published results are often based on a small number of relatively simple datasets. Consequently no generally applicable conclusions can be drawn.  相似文献   
16.
Recent studies have shown that elongation factors extracted from archaea/eukarya and from eubacteria exhibit different structural and functional properties. Along this line, it has been demonstrated that, in contrast to EF-Tu, Sulfolobus solfataricus EF-1alpha in complex with GDP (SsEF-1alpha.GDP) does not bind Mg(2+), when the ion is present in the crystallization medium at moderate concentration (5 mM). To further investigate the role that magnesium plays in the exchange process of EF-1alpha and to check the ability of SsEF-1alpha.GDP to bind the ion, we have determined the crystal structure of SsEF-1alpha.GDP in the presence of a nonphysiological concentration (100 mM) of Mg(2+). The analysis of the coordination of Mg(2+) unveils the structural bases for the marginal role played by the ion in the nucleotide exchange process. Furthermore, nucleotide exchange experiments carried out on a truncated form of SsEF-1alpha, consisting only of the nucleotide binding domain, demonstrate that the low affinity of SsEF-1alpha.GDP for Mg(2+) is due to the local architecture of the active site and does not depend on the presence of the other two domains. Finally, considering the available structures of EF-1alpha, a detailed mechanism for the nucleotide exchange process has been traced. Notably, this mechanism involves residues such as His14, Arg95, Gln131, and Glu134, which are strictly conserved in all archaea and eukarya EF-1alpha sequences hitherto reported.  相似文献   
17.
A recombinant chimeric elongation factor containing the region of EF-1 alpha from Sulfolobus solfataricus harboring the site for GDP and GTP binding and GTP hydrolysis (SsG) and domains M and C of Escherichia coli EF-Tu (EcMC) was studied. SsG-EcMC did not sustain poly(Phe) synthesis in either S. solfataricus or E. coli assay system. This was probably due to the inability of the chimera to interact with aa-tRNA. The three-dimensional modeling of SsG-EcMC indicated only small structural differences compared to the Thermus aquaticus EF-Tu in the ternary complex with aa-tRNA and GppNHp, which did not account for the observed inability to interact with aa-tRNA. The addition of the nucleotide exchange factor SsEF-1 beta was not required for poly(Phe) synthesis since the chimera was already able to exchange [(3)H]GDP for GTP at very high rate even at 0 degrees C. Compared to that of SsEF-1 alpha, the affinity of the chimera for guanine nucleotides was increased and the k(cat) of the intrinsic GTPase was 2-fold higher. The heat stability of SsG-EcMC was 3 and 13 degrees C lower than that displayed by SsG and SsEF-1alpha, respectively, but 30 degrees C higher than that of EcEF-Tu. This pattern remained almost the same if the melting curves of the proteins being investigated were considered instead. The chimeric elongation factor was more thermophilic than SsG and SsEF-1 alpha up to 70 degrees C; at higher temperatures, inactivation occurred.  相似文献   
18.
The elongation factor Tu was isolated from a psychrophilic eubacterial Antarctic Moraxella strain (MoEF-Tu) and its molecular and functional properties were determined. It catalyzed the synthesis of poly(Phe) and bound specifically guanine nucleotides with an affinity for GDP about 12-fold higher than that for GTP. The affinity toward guanine nucleotides was lower than that of other eubacterial EF-Tu. The intrinsic GTPase activity of MoEF-Tu was hardly detectable but was accelerated by 2 orders of magnitude in the presence of the antibiotic kirromycin (GTPase(k)). Such a property resembled Escherichia coli EF-Tu (EcEF-Tu) even though the affinity of MoEF-Tu for the antibiotic was lower. MoEF-Tu showed a thermophilicity higher than that of EcEF-Tu; its temperature for half-denaturation was 44 degrees C. The MoEF-Tu encoding gene corresponding to E. coli tufA was cloned and sequenced. The translated protein had a calculated molecular weight of 43 288 and contained the GTP-binding sequence motifs. Concerning its primary structure, MoEF-Tu showed sequence identity with E. coli and Thermus thermophilus EF-Tu equal to 84% and 74%, respectively, while the identity with EF-1 alpha from the archaeon Sulfolobus solfataricus was equal to 32%.  相似文献   
19.

Background  

Cerebellar granule cell precursors are specifically generated within the hindbrain segment, rhombomere 1, which is bounded rostrally by the midbrain/hindbrain isthmus and caudally by the boundary of the Hoxa2 expression domain. While graded signals from the isthmus have a demonstrable patterning role within this region, the significance of segmental identity for neuronal specification within rhombomere 1 is unexplored. We examined the response of granule cell precursors to the overexpression of Hoxa2, which normally determines patterns of development specific to the hindbrain. How much does the development of the cerebellum, a midbrain/hindbrain structure, reflect its neuromeric origin as a hindbrain segment?  相似文献   
20.
Using circulant symmetry to model featureless objects   总被引:1,自引:0,他引:1  
Kent  JT; Dryden  IL; Anderson  CR 《Biometrika》2000,87(3):527-544
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号