首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2307篇
  免费   177篇
  2484篇
  2021年   23篇
  2016年   34篇
  2015年   40篇
  2014年   63篇
  2013年   75篇
  2012年   74篇
  2011年   81篇
  2010年   77篇
  2009年   60篇
  2008年   97篇
  2007年   108篇
  2006年   63篇
  2005年   78篇
  2004年   70篇
  2003年   51篇
  2002年   62篇
  2001年   44篇
  2000年   55篇
  1999年   53篇
  1998年   29篇
  1997年   30篇
  1996年   23篇
  1995年   23篇
  1994年   28篇
  1993年   22篇
  1992年   46篇
  1991年   57篇
  1990年   54篇
  1989年   39篇
  1988年   41篇
  1987年   41篇
  1986年   38篇
  1985年   32篇
  1984年   29篇
  1981年   22篇
  1980年   24篇
  1979年   28篇
  1978年   28篇
  1976年   24篇
  1975年   23篇
  1974年   28篇
  1973年   35篇
  1971年   30篇
  1965年   37篇
  1963年   37篇
  1962年   23篇
  1961年   33篇
  1960年   24篇
  1959年   27篇
  1958年   27篇
排序方式: 共有2484条查询结果,搜索用时 0 毫秒
991.
992.
Protein engineering is becoming increasingly important for pharmaceutical applications where controlling the specificity and affinity of engineered proteins is required to create targeted protein therapeutics. Affinity increases of several thousand-fold are now routine for a variety of protein engineering approaches, and the structural and energetic bases of affinity maturation have been investigated in a number of such cases. Previously, a 3-million-fold affinity maturation process was achieved in a protein-protein interaction composed of a variant T-cell receptor fragment and a bacterial superantigen. Here, we present the molecular basis of this affinity increase. Using X-ray crystallography, shotgun reversion/replacement scanning mutagenesis, and computational analysis, we describe, in molecular detail, a process by which extrainterfacial regions of a protein complex can be rationally manipulated to significantly improve protein engineering outcomes.  相似文献   
993.
994.
995.
Molecular barcode arrays allow the analysis of thousands of biological samples in parallel through the use of unique 20-base-pair (bp) DNA tags. Here we present a new barcode array, which is unique among microarrays in that it includes at least five replicates of every tag feature. The use of smaller dispersed replicate features dramatically improves performance versus a single larger feature and allows the correction of previously undetectable hybridization defects.  相似文献   
996.
997.
998.
Random amplified polymorphic DNA (RAPD) markers were used as input for an analysis of molecular variance (AMOVA), homogeneity of molecular variance analysis (HOMOVA), and cluster analysis to describe the population genetic structure of Iliamna corei, a federally endangered plant located only in Virginia, and I. remota , a rare plant in Virginia, Indiana, and Illinois. The analysis was performed to help clarify the taxonomic relationship between the two closely related species. We analysed four clones in the only known population of I. corei , breeding stock derived from seeds originating from the population site, and three I. remota populations in Virginia. Eighty-five percent of screened primers revealed DNA polymorphisms in Iliamna. Ninety-nine informative markers were generated using seven primers. No significant statistical differences (at P = 0.05) in RAPD variation was found between species (24% of variance) using the AMOVA procedure. However, within species/among populations (31 % of the variance) and within populations (45% of the variance) there were significant differences (P < 0.002). An unweighted paired group method using arithmetic averages (UPGMA) cluster analysis showed the federally endangered I. corei population to be genetically distinct from the apparently recently introduced (in Virginia: ∼ 100 ybp) I. remota. The lack of significant differences from the AMOVA and the high number shared bands between I. corei and I. remota suggest that I. corei may be more appropriately classified as a subspecies of I. remota. Iliamna corei plants in the natural population were genetically similar to one another while the I. corei breeding stock plants and I. remota plants were genetically relatively diverse.  相似文献   
999.
Induction of voluntary prolonged running by rats   总被引:1,自引:0,他引:1  
The rat is widely used in studies of the metabolic and physiological effects of physical exercise. The most commonly used form of exercise is running on treadmills or mechanically driven running wheels. Rats will not voluntarily run significant distances, under normal circumstances. If rats are exposed to running wheels with food freely available, only very limited activity normally occurs. When rats with access to a running wheel are restricted to a fixed amount of food, presented once per day, consistent running occurs. The running is spontaneous and very sensitive to the amount of food provided. Six 6-wk-old rats of 197 g mean body wt were induced to run for 139 days. The distance run increased rapidly over a 20-day initial period on a food supply of 15 g/day (vs. 19.5 g/day consumption by sedentary controls). From day 20 to day 139 the mean distance run was described by the regression equation distance (m/day) = 10,410 - 37.9 X days. Food provided was varied according to distance run, ranging from 15 to 18 g/day, and was normally 17.5 g/day. Thus a food deprivation of 10% of normal consumption will result in mean distances run of approximately 8,000 m/day. The use of pair-fed control animals without access to a wheel allows the conduct of experiments to test the effects of chronic long-distance running. The running is spontaneous; thus the technique avoids the complications accompanying techniques that force running.  相似文献   
1000.
Mutations were made at 64 positions on the external surface of the adeno-associated virus type 2 (AAV-2) capsid in regions expected to bind antibodies. The 127 mutations included 57 single alanine substitutions, 41 single nonalanine substitutions, 27 multiple mutations, and 2 insertions. Mutants were assayed for capsid synthesis, heparin binding, in vitro transduction, and binding and neutralization by murine monoclonal and human polyclonal antibodies. All mutants made capsid proteins within a level about 20-fold of that made by the wild type. All but seven mutants bound heparin as well as the wild type. Forty-two mutants transduced human cells at least as well as the wild type, and 10 mutants increased transducing activity up to ninefold more than the wild type. Eighteen adjacent alanine substitutions diminished transduction from 10- to 100,000-fold but had no effect on heparin binding and define an area (dead zone) required for transduction that is distinct from the previously characterized heparin receptor binding site. Mutations that reduced binding and neutralization by a murine monoclonal antibody (A20) were localized, while mutations that reduced neutralization by individual human sera or by pooled human, intravenous immunoglobulin G (IVIG) were dispersed over a larger area. Mutations that reduced binding by A20 also reduced neutralization. However, a mutation that reduced the binding of IVIG by 90% did not reduce neutralization, and mutations that reduced neutralization by IVIG did not reduce its binding. Combinations of mutations did not significantly increase transduction or resistance to neutralization by IVIG. These mutations define areas on the surface of the AAV-2 capsid that are important determinants of transduction and antibody neutralization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号