首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   10篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   8篇
  2014年   6篇
  2013年   5篇
  2012年   10篇
  2011年   7篇
  2010年   3篇
  2009年   9篇
  2008年   5篇
  2007年   2篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   8篇
  2001年   1篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有127条查询结果,搜索用时 687 毫秒
21.
22.
Rhizomania, one of the most devastating diseases in sugar beet, is caused by Beet Necrotic Yellow Vein Virus (BNYVV) belonging to the genus Benyvirus. Use of sugar beet varieties with resistance to BNYVV is generally considered as the only way to maintain a profitable yield on rhizomania-infested fields. As an alternative to natural resistance, we explored the transgenic expression of viral dsRNA for engineering resistance to rhizomania. Transgenic plants expressing an inverted repeat of a 0.4 kb fragment derived from the BNYVV replicase gene displayed high levels of resistance against different genetic strains of BNYVV when inoculated using the natural vector, Polymyxa betae. The resistance was maintained under high infection pressures and over prolonged growing periods in the greenhouse as well as in the field. Resistant plants accumulated extremely low amounts of transgene mRNA and high amounts of the corresponding siRNA in the roots, illustrative of RNA silencing as the underlying mechanism. The transgenic resistance compared very favourably to natural sources of resistance to rhizomania and thus offers an attractive alternative for breeding resistant sugar beet varieties.  相似文献   
23.
24.
The chromosomal location of the major gene Ry adg controlling extreme resistance to potato virus Y (PVY) in Solanum tuberosum subsp. andigena was identified by RFLP analysis of a diploid potato population. A total of 64 tomato and potato RFLP markers were screened with the bulked segregant analysis (BSA) on segregants extremely resistant, hypersensitive or susceptible to PVY. Four markers TG508, GP125, CD17 and CT168 at the proximal end of chromosome XI showed close linkage with extremely resistant phenotypes. TG508 was identified as the closest marker linked with the Ry adg locus with the maximum map distance estimated as 2.0 cM. The 4 markers linked with the Ry adg locus were tested on independent tetraploid and diploid potato clones and were subsequently found useful for marker-assisted selection for plants containing Ry adg . Received: 5 July 1996 / Accepted: 19 July 1996  相似文献   
25.
26.
The present work describes a procedure for the co-purification of cysteine sulfinate decarboxylase (CSAD) and glutamate decarboxylase (GAD) from calf brain. A crude enzyme preparation was first made from brain homogenate by acid precipitation and ammonium sulphate fractionation. Subsequent fractionation of the decarboxylase preparation by cation exchange chromatography on CM-Sepharose CL-6B revealed the existence of a specific CSAD enzyme, which has no GAD activity. The GAD activity peak was found to possess CSAD activity. Further fractionation by gel filtration on Sephacryl S-200 separated the specific CSAD activity into two enzyme forms, one of them having a molecular weight of 150,000 and the other of 71,000. GAD activity was eluted from the gel filtration column in a single peak (mol wt 330,000) and showed CSAD activity. The purification of the specific CSAD enzyme was 920-fold and that of GAD activity 850-fold as compared with the starting material, whole calf brain. SDS gel electrophoresis indicated that the purified CSAD and GAD enzymes consisted of two or more subunits. The crude decarboxylase preparation was analysed by isoelectric focusing in ultra-thin polyacrylamide gel in the pH range 3.5-10.0. The most active fraction of CSAD indicated an isoelectric point of 6.5 and that of GAD 6.8. The pH optimum for CSAD activity in the crude preparation was 7.2 and that for GAD activity 7.9.  相似文献   
27.
The tuber‐bearing wild potato species, Solanum stoloniferum, carries a dominant gene, Rysto, which confers extreme resistance (ER) to Potato virus Y (PVY). This gene was introgressed to cultivated potato germplasm (Solanum tuberosum) using accessions of S. stoloniferum maintained in European gene banks. It is mainly used in potato breeding programmes in Europe. Rysto was recently mapped to potato chromosome XII. However, in this study, a different accession of S. stoloniferum (PI275244; Haw1293) was used as a female parent in a cross to obtain a diploid (2n = 2x = 24) potato population of 112 F1 genotypes. From this accession, ER to PVY has been introgressed to the potato breeding programmes at the International Potato Center (Peru). As expected, ER to PVY was inherited in a dominant, monogenic fashion in the F1 population. Marker‐specific choices of DNA polymerase and adjustments of PCR conditions were made to optimise marker detection. The corresponding gene (Rysto) was mapped to the chromosome XII using the previously described and new cleaved amplified polymorphic sequence (CAPS) markers, which are based on the restriction fragment length polymorphism loci GP122 (six markers) and GP269 (one marker), and the simple sequence repeat marker STM0003. Four GP122‐based CAPS markers and STM0003 detected the same genotypes expressing ER to PVY. Because of a few recombinants, that is ER genotypes lacking the markers and the genotypes that react with necrosis but contain the markers, the marker distance from Rysto was estimated as 15.2 cM in this F1 population. However, the distance may be less if necrosis was considered an altered response also controlled by Rysto. The markers also specifically detected independent European potato cultivars that express ER to PVY derived from S. stoloniferum. Phylogenetic analysis of the sequences amplified from the GP122 locus of S. stoloniferum and potato cultivars further confirmed that the Rysto gene from independent accessions of S. stoloniferum can be selected using the same markers and the protocols described in this study.  相似文献   
28.
29.
Potato virus A (PVA), a potyvirus with a (+)ssRNA genome translated to a large polyprotein, was engineered and used as a gene vector for expression of heterologous proteins in plants. Foreign genes including jellyfish GFP (Aequorea victoria) encoding the green fluorescent protein (GFP, 27 kDa) and the genes of human origin (Homo sapiens) encoding a soluble resistance-related calcium-binding protein (sorcin, 22 kDa) and the catechol-O-methyltransferase (S-COMT; 25 kDa) were cloned between the cistrons for the viral replicase and coat protein (CP). The inserts caused no adverse effects on viral infectivity and virulence, and the inserted sequences remained intact in progeny viruses in the systemically infected leaves. The heterologous proteins were released from the viral polyprotein following cleavage by the main viral proteinase, NIa, at engineered proteolytic processing sites flanking the insert. Active GFP, as indicated by green fluorescence, and S-COMT with high levels of enzymatic activity were produced. In contrast, no sorcin was detected despite the expected equimolar amounts of the foreign and viral proteins being expressed as a polyprotein. These data reveal inherent differences between heterologous proteins in their suitability for production in plants.  相似文献   
30.
The bimolecular fluorescence complementation (BiFC) phenomenon has been successfully applied for in vivo protein-protein interaction studies and protein tagging analysis. Here we report a novel BiFC-based technique for investigation of integral membrane protein topology in living plant cells. This technique relies on the formation of a fluorescent complex between a non-fluorescent fragment of the yellow fluorescent protein (YFP) targeted into a specific cellular compartment and a counterpart fragment attached to the integral membrane protein N- or C-terminus or inserted into the internal loop(s). We employed this technique for topological studies of beet yellows virus-encoded p6 membrane-embedded movement protein, a protein with known topology, and the potato mop-top virus-encoded integral membrane TGBp2 protein with predicted topology. The results confirm that p6 is a type III integral transmembrane protein. Using a novel method, the central hydrophilic region of TGBp2 was localized into the ER lumen, whereas the N- and C-termini localized to the cytosol. We conclude that the BiFC-based reporter system for membrane protein topology analysis is a relatively fast and efficient method that can be used for high-throughput analysis of proteins integrated into the endoplasmic reticulum in living plant cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号