首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   3篇
  318篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   12篇
  2011年   21篇
  2010年   26篇
  2009年   27篇
  2008年   26篇
  2007年   24篇
  2006年   22篇
  2005年   14篇
  2004年   10篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   9篇
  1997年   15篇
  1996年   9篇
  1995年   2篇
  1994年   6篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   6篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   4篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
  1956年   1篇
  1955年   2篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
31.
INTRODUCTIONThe inappropriate enhancement of lymphocytesurviVal due to a block in programmed cell deathand/or an enhancement of entry into the cell cyclecan contribute to the abnormal expansion of clonesresulting in tumorigenesis or the breakdown of pe-ripheral self-toleranced, 2]. Proper lymphocytehomeostasis is critical for normal immune functionand is maintained by a complex series of cellularinteractions and the action of secreted cytokines.Illterleukin-4 (IL-4), a cytokine produced …  相似文献   
32.
1. In brown food webs of the forest floor, necromass (e.g. insect carcasses and frass) falling from the canopy feeds both microbes and ants, with the former decomposing the homes of the latter. In a tropical litter ant community, we added necromass to 1 m2 plots, testing if it added as a net food (increasing ant colony growth and recruitment) or destroyer of habitat (by decomposing leaf litter). 2. Maximum, but not mean, colony growth rates were higher on +food plots. However, neither average colony size, nor density was higher on +food plots. In contrast, +food plots saw diminished availability of leaf litter and higher microbial decomposition of cellulose, a main component of the organic substrate that comprises litter habitat. 3. Furthermore, necromass acted as a limiting resource to the ant community only when nest sites were supplemented on +food plots in a second experiment. Many of these +food +nest plots were colonised by the weedy species Wasmannia auropunctata. 4. Combined, these results support the more food–less habitat hypothesis and highlight the importance of embedding studies of litter ant ecology within broader decomposer food web dynamics.  相似文献   
33.
Abstract: We captured and radiocollared 57 pronghorn (Antilocapra americana) fawns in western South Dakota, USA, during May 2002–2003 and radiotracked them through 15 months of age, by which time all surviving individuals had established a permanent home range. We classified 56% (n = 19) of fawns as dispersers and 44% (n = 15) as residents. Eighty-four percent (n = 16) of dispersers departed natal home ranges in late October and occupied winter home ranges for 102–209 days before dispersing to permanent home ranges during April 2003 and 2004. Dispersal distances from natal ranges to permanent home ranges varied from 6.2–267.0 km. Winter home-range sizes for all individual pronghorns varied from 39.4–509.6 km. Permanent home-range size for all individuals varied from 15.5–166.1 km2. Mean 95% permanent home-range size differed (P = 0.06) between residents (x̄ = 97.3 ± 15.1 km2) and dispersers (x̄ = 48.6 ± 16.0 km2), but was similar (P = 0.97) among sexes. Mean dispersal distance from natal to permanent home ranges was similar (P = 0.35) for males (x̄ = 54.2 ± 21.0 km) and females (x̄ = 26.3 ± 19.9 km). We suggest that habitat quality (i.e., patchiness) and pronghorn density, in part, stimulated dispersal. We hypothesize that as habitat patch size decreases, home range sizes and distance traveled during predispersal and dispersal movements by pronghorns will increase.  相似文献   
34.
Abstract Cane toads (Bufo marinus) are large toxic anurans that have spread through much of tropical Australia since their introduction in 1935. Our surveys of the location of the toad invasion front in 2001 to 2005, and radiotracking of toads at the front near Darwin in 2005, reveal much faster westwards expansion than was recorded in earlier stages of toad invasion through Queensland. Since reaching the wet‐dry tropics of the Northern Territory, the toads have progressed an average of approximately 55 km year−1 (mean rate of advance 264 m night−1 along a frequently monitored 55‐km road transect during the wet season of 2004–2005). Radiotracking suggests that this displacement is due to rapid locomotion by free‐ranging toads rather than human‐assisted dispersal; individual toads frequently moved >200 m in a single night. One radiotracked toad moved >21 800 m in a 30‐day period; the fastest rate of movement yet recorded for any anuran. Daily displacements of radiotracked toads varied with time and local weather conditions, and were highest early in the wet season on warm, wet and windy nights. The accelerated rate of expansion of the front may reflect either, or both: (i) evolved changes in toads or (ii) that toads have now entered an environment more favourable to spread. This accelerated rate of expansion means that toads will reach the Western Australian border and their maximal range in northern Australia sooner than previously predicted.  相似文献   
35.
High‐latitude regions store large amounts of organic carbon (OC) in active‐layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near‐surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long‐term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near‐surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire‐induced thawing of near‐surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance.  相似文献   
36.
37.
Climate change will alter the abundance and distribution of species. Predicting these shifts is a challenge for ecologists and essential information for the formation of public policy. Here, I use a mechanistic mathematical model of the interaction between grass growth physiology and aphid population dynamics, coupled with the climate change projections from the UK's Hadley Centre HadCM3 global circulation model (GCM) and Canada's Center for Climate Modeling and Analysis CGCM2 GCM to predict the changes in the abundance and distribution of summer cereal aphid populations in wheat-growing regions of Canada. When used with the HadCM3 projections, the model predicts a latitudinal shift northward in abundances but there is longitudinal variation as well. However, when used with the CGCM2 projections the model predicts that continental regions will see a decline while coastal regions will see an increase in summer cereal aphid populations. These effects are stronger under the higher emissions scenarios.  相似文献   
38.
Abstract Predicting the various responses of different species to changes in landscape structure is a formidable challenge to landscape ecology. Based on expert knowledge and landscape ecological theory, we develop five competing a priori models for predicting the presence/absence of the Koala (Phascolarctos cinereus) in Noosa Shire, south‐east Queensland (Australia). A priori predictions were nested within three levels of ecological organization: in situ (site level) habitat (<1 ha), patch level (100 ha) and landscape level (100–1000 ha). To test the models, Koala surveys and habitat surveys (n = 245) were conducted across the habitat mosaic. After taking into account tree species preferences, the patch and landscape context, and the neighbourhood effect of adjacent present sites, we applied logistic regression and hierarchical partitioning analyses to rank the alternative models and the explanatory variables. The strongest support was for a multilevel model, with Koala presence best predicted by the proportion of the landscape occupied by high quality habitat, the neighbourhood effect, the mean nearest neighbour distance between forest patches, the density of forest patches and the density of sealed roads. When tested against independent data (n = 105) using a receiver operator characteristic curve, the multilevel model performed moderately well. The study is consistent with recent assertions that habitat loss is the major driver of population decline, however, landscape configuration and roads have an important effect that needs to be incorporated into Koala conservation strategies.  相似文献   
39.
40.
1. Sedentary grazers can be numerous in fresh waters, despite the constraints on resource availability and the increased predation risk inherent in this lifestyle. The retreats of sedentary grazers have been assumed to provide protection to the resident (a ‘house’), but also may provide additional fertilised food for the grazer (i.e. a ‘garden’). If retreats function as a garden, then they should (i) contain a higher quality and/or quantity of food than the alternative food source. Furthermore, the proportion of retreat‐derived carbon and nitrogen assimilated by the resident should be (ii) related to overall resource availability (more when resources are limited) or (iii) perhaps also to larval density. Alternatively, if retreats provide a less risky food source, then (iv) assimilation of material from the retreat is likely to be greater under conditions in which the risk of emerging from the retreat is high. 2. We tested these four hypotheses for the common and widespread gallery‐building grazing caddisfly Tinodes waeneri. Resource availability, larval density and biomass, and exposure were measured for populations from six lakes of differing productivity in August, October and January. 3. Galleries always contained more algal food than the surrounding epilithon, suggesting that gardening is effective. Furthermore, gallery chlorophyll a content in August, and the disparity in food quality (assessed from the C : N ratio) between gallery and epilithon (quality higher in the former) in October were positively related to the proportion of larval biomass that was derived from the gallery. Larval density and wave exposure parameters were not related to larval assimilation of gallery material. 4. Galleries that are fertilised by the occupant provide more, and sometimes also better quality, food (in terms of the C : N ratio) than is otherwise available. Thus, the gallery plays a substantial role in larval nutrition, and this role is greater at key times of food shortage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号