首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   2篇
  2015年   2篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1972年   1篇
  1937年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
11.
Abstract.  1. Host plant finding in walking herbivorous beetles is still poorly understood. Analysis of small-scale movement patterns under semi-natural conditions can be a useful tool to detect behavioural responses towards host plant cues.
2. In this study, the small-scale movement behaviour of the monophagous leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) was studied in a semi-natural arena ( r = 1 m). In three different settings, a host ( Salvia pratensis L., Lamiales: Lamiaceae), a non-host ( Rumex conglomeratus Murr., Caryophyllales: Polygonaceae), or no plant was presented in the centre of the arena.
3. The beetles showed no differences in the absolute movement variables, straightness and mean walking speed, between the three settings. However, the relative movement variables, mean distance to the centre and mean angular deviation from walking straight to the centre, were significantly smaller when a host plant was offered. Likewise, the angular deviation from walking straight to the centre tended to decline with decreasing distance from the centre. Finally, significantly more beetles were found on the host than on the non-host at the end of all the trials.
4. It is concluded that C. canaliculata is able to recognise its host plant from a distance. Whether olfactory or visual cues (or a combination of both) are used to find the host plant remains to be elucidated by further studies.  相似文献   
12.
Lions were the most widespread carnivores in the late Pleistocene, ranging from southern Africa to the southern USA, but little is known about the evolutionary relationships among these Pleistocene populations or the dynamics that led to their extinction. Using ancient DNA techniques, we obtained mitochondrial sequences from 52 individuals sampled across the present and former range of lions. Phylogenetic analysis revealed three distinct clusters: (i) modern lions, Panthera leo ; (ii) extinct Pleistocene cave lions, which formed a homogeneous population extending from Europe across Beringia (Siberia, Alaska and western Canada); and (iii) extinct American lions, which formed a separate population south of the Pleistocene ice sheets. The American lion appears to have become genetically isolated around 340 000 years ago, despite the apparent lack of significant barriers to gene flow with Beringian populations through much of the late Pleistocene. We found potential evidence of a severe population bottleneck in the cave lion during the previous interstadial, sometime after 48 000 years, adding to evidence from bison, mammoths, horses and brown bears that megafaunal populations underwent major genetic alterations throughout the last interstadial, potentially presaging the processes involved in the subsequent end-Pleistocene mass extinctions.  相似文献   
13.
The dating of recent events in the history of organisms needs divergence rates based on molecular fingerprint markers. Here, we used amplified fragment length polymorphisms (AFLPs) of three distantly related alpine plant species co-occurring in the Spanish Sierra Nevada, the Pyrenees and the southwestern Alps/Massif Central to establish divergence rates. Within each of these species ( Gentiana alpina , Kernera saxatilis and Silene rupestris ), we found that the degree of AFLP divergence ( D N72) between mountain phylogroups was significantly correlated with their time of divergence (as inferred from palaeoclimatic/palynological data), indicating constant AFLP divergence rates. As these rates did not differ significantly among species, a regression analysis based on the pooled data was utilized to generate a general AFLP rate. The application of this latter rate to AFLP data from other herbaceous plant species ( Minuartia biflora : Schönswetter et al . 2006 ; Nigella degenii : Comes et al . 2008 ) resulted in a plausible timing of the recolonization of the Svalbard Islands and the separation of populations from the Alps and Scandinavia ( Minuartia ), and of island population separation in the Aegean Archipelago ( Nigella ). Furthermore, the AFLP mutation rate obtained in our study is of the same magnitude as AFLP mutation rates published previously. The temporal limits of our AFLP rate, which is based on intraspecific vicariance events at shallow (i.e. late glacial/Early Holocene) time scales, remains to be tested.  相似文献   
14.
In this article, we present the cloning of Hscm1 , a gene for chorismate mutase (CM) from the beet cyst nematode Heterodera schachtii . CM is a key branch-point enzyme of the shikimate pathway, and secondary metabolites that arise from this pathway control developmental programmes and defence responses of the plant. By manipulating the plant's endogenous shikimate pathway, the nematode can influence the plant physiology for its own benefit. Hscm1 is a member of the CM gene family and is expressed during the pre-parasitic and parasitic stages of the nematode's life cycle. In situ mRNA hybridization reveals an expression pattern specific to the subventral and dorsal pharyngeal glands. The predicted protein has a signal peptide for secretion in addition to two domains. The N-terminal domain of the mature protein, which is only found in cyst nematodes, contains six conserved cysteine residues, which may reflect the importance of disulphide bond formation for protein stabilization. The C-terminal domain holds a single catalytic site and has similarity to secreted CMs of pathogenic bacteria, classifying HsCM1 as an AroQγ enzyme. The presumed catalytic residues are discussed in detail, and genetic complementation experiments indicate that the C-terminal domain is essential for enzyme activity. Finally, we show how the modular design of the protein is mirrored in the genomic sequence by the intron/exon organization, suggesting exon shuffling as a mechanism for the evolutionary assembly of this protein.  相似文献   
15.
Sibling species groups are suitable models for the understanding of inter‐ and intraspecific processes in taxonomy and biogeography. We analysed 262 individuals from the Alps of the Coenonympha arcania/gardetta species complex by allozyme electrophoresis. These taxa showed high variance amongst populations (FST: 0.391) and strong intertaxon genetic differentiation (FCT: 0.376). Although morphologically similar, Coenonympha gardetta and Coenonympha arcania clearly differ in their genetic characteristics; the morphologically intermediate taxa Coenonympha darwiniana darwiniana and Coenonympha darwiniana macromma are genetically well distinguished from each other and the two other taxa. Coenonympha arcania and C. d. macromma most probably share a common ancestor and evolved by cladogenesis, whereas the taxonomic situation of C. d. darwiniana is still unresolved: This taxon might be the result of hybridization between C. arcania and C. gardetta or it might have a common ancestor together with C. gardetta. We suggest species rank for all four taxa. The distribution of genetic diversity of these populations and the differentiation amongst populations suggest rather different biogeographical scenarios: C. arcania most probably is of Mediterranean origin with postglacial range expansion northwards; C. gardetta survived the last ice age in peripheral refugia of the Alps and has spread all over this high mountain system in the postglacial; C. darwiniana and C. macromma survived the Würm in geographic proximity to their actual distribution areas and only have performed moderate uphill translocations during postglacial warming. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159 , 890–904.  相似文献   
16.
It has been documented extensively that body size affects the physiology and musculoskeletal function of organisms. However, less well understood is how body size affects the ecology of organisms through its effects on physiology and performance. We explored the effects of body size on morphology and performance in different ontogenetic classes and sexes of a common Anolis lizard ( A. lineatopus ). Next, we tested whether these morphological and performance differences may affect functional aspects of the diet such as prey size and prey hardness. Our data showed that males, females and juveniles differ significantly in head size, head shape and bite force. Multiple regression models indicated that head shape and bite force are significantly correlated to prey size and hardness. Yet juveniles had relatively large heads and bit disproportionately hard for their size, allowing them to eat prey as large as those of females. However, for a given prey size, males and females ate more robust prey than did juveniles. Additionally, males ate relatively harder prey than did juveniles. These data suggest that: (1) body size affects the dietary ecology of animals through its effect on head size and bite force; (2) changes in head morphology independent of changes in overall size also have important effects on performance and diet.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 443–454.  相似文献   
17.
18.
Chloroplast thioredoxin f (Trx f) is an important regulator of primary metabolic enzymes. However, genetic evidence for its physiological importance is largely lacking. To test the functional significance of Trx f in vivo, Arabidopsis mutants with insertions in the trx f1 gene were studied, showing a drastic decrease in Trx f leaf content. Knockout of Trx f1 led to strong attenuation in reductive light activation of ADP‐glucose pyrophosphorylase (AGPase), the key enzyme of starch synthesis, in leaves during the day and in isolated chloroplasts, while sucrose‐dependent redox activation of AGPase in darkened leaves was not affected. The decrease in light‐activation of AGPase in leaves was accompanied by a decrease in starch accumulation, an increase in sucrose levels and a decrease in starch‐to‐sucrose ratio. Analysis of metabolite levels at the end of day shows that inhibition of starch synthesis was unlikely due to shortage of substrates or changes in allosteric effectors. Metabolite profiling by gas chromatography–mass spectrometry pinpoints only a small number of metabolites affected, including sugars, organic acids and ethanolamine. Interestingly, metabolite data indicate carbon shortage in trx f1 mutant leaves at the end of night. Overall, results provide in planta evidence for the role played by Trx f in the light activation of AGPase and photosynthetic carbon partitioning in plants.  相似文献   
19.
20.
1. Amazonian terrestrial invertebrates produce high population densities during favourable periods and may suffer a drastic decrease during occasional floods and droughts. However, the monomodal, predictable flood pulse of the larger Amazonian rivers favours the development of morphological (respiratory organs, wing‐dimorphism), phenological (synchronization of life cycles, univoltine mode of life), physiological (flooding ability, gonad dormancy, alternating number of developmental stages), and behavioural adaptations (migration, temporal diving) with numerous interactions. 2. In lowlands of Central Europe, the flood pulse of large rivers is less predictable than in Central Amazonia and is superimposed by the seasonal light/temperature pulse (summer/winter regime). Some terrestrial invertebrates show physiological resistance against inundation or drought, phenologies fitting the normal annual rhythm of water level fluctuation (quiescence or diapause of eggs or adult invertebrates), high dispersal ability and migration. However, most species survive simply using a `risk strategy', combining high reproduction rates, dispersal and reimmigration following catastrophic events. 3. The diversity of species in terrestrial invertebrates is lower in lowland riverine ecosystems of Central Amazonia and Central Europe compared with the respective uplands because of flood stress in these systems. However, floodplains in Central Amazonia possess a greater number of endemic species in comparison with Central European floodplains because of long periods of fairly stable climatic conditions in comparison with large palaeoclimatic changes in Central Europe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号