首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   39篇
  625篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   9篇
  2017年   6篇
  2016年   12篇
  2015年   27篇
  2014年   29篇
  2013年   36篇
  2012年   27篇
  2011年   31篇
  2010年   37篇
  2009年   29篇
  2008年   22篇
  2007年   25篇
  2006年   23篇
  2005年   24篇
  2004年   17篇
  2003年   16篇
  2002年   21篇
  2001年   12篇
  2000年   11篇
  1999年   6篇
  1998年   20篇
  1997年   13篇
  1996年   6篇
  1995年   10篇
  1994年   3篇
  1993年   9篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   14篇
  1986年   3篇
  1985年   9篇
  1984年   8篇
  1983年   4篇
  1982年   20篇
  1981年   4篇
  1979年   4篇
  1978年   6篇
  1977年   8篇
  1976年   5篇
  1975年   4篇
  1974年   5篇
  1966年   2篇
  1965年   2篇
  1961年   2篇
  1939年   2篇
排序方式: 共有625条查询结果,搜索用时 15 毫秒
71.
B. Hock  M. Bahn  R.-A. Walk  U. Nitschke 《Planta》1978,141(1):93-103
The morphological effects of biotin and L-arginine on fruiting body formation of the ascomycete Sordaria macrospora are investigated by scanning electron and light microscopy. Biotin is recognized as an elongation factor and arginine as a branching factor in vegetative and reproductive hyphae. In the absence of exogenous biotin, development is blocked after the ascogonium-core hypha stage of protoperithecial morphogenesis, whereas linear growth of the myceliar front is maintained. The addition of exogenous arginine to a biotin deficient culture induces the formation of numerous side branches even in the older mycelium. Fruiting body formation, however, remains blocked at the protoperithecial stage as before, because of the inability of the side branches to elongate. When biotin and arginine are administered simultaneously, a most vigorous branching and growth are induced in the older mycelium, accompanied by a rapid and maximal formation of fruiting bodies. The results are summarized in a model of the exogenous control of hyphal morphogenesis. The model is designed to explain the relationship between fruiting and hyphal density as well as the edge effect on fruiting body formation.  相似文献   
72.
Illuminated intact pea chloroplasts in the presence of O-acetylserine (OAS) catalysed incorporation of SeO32- and SO32- into selenocysteine and cysteine at rates of ca 0.36 and 6 μmol/mg Chl per hr respectively. Sonicated chloroplasts catalysed SeO32- and SO32- incorporation at ca 3.9 and 32% respectively of the rates of intact chloroplasts. Addition of GSH and NADPH increased the rates to ca 91 and 98% of the intact rates, but SeO32- incorporation under these conditions was essentially light-independent. In the absence of OAS, intact chloroplasts catalysed reduction of SO32- to S2- at rates of ca 5.8 μmol/mg Chl per hr. In the presence of OAS, S2- did not accumulate. Glutathione (GSH) reductase was purified from peas and was inhibited by ZnCl2. This enzyme, in the presence of purified clover cysteine synthase, OAS, GSH and NADPH, catalysed incorporation of SeO32- into selenocysteine (but not SO32- into cysteine). The reaction was inhibited by ZnCl2. Incorporation of SeO32- into selenocysteine by illuminated intact chloroplasts and sonicated chloroplasts (with NADPH and GSH) was also inhibited by ZnCl2 but not by KCN. Conversely, incorporation of SO32- into cysteine was inhibited by KCN but not by ZnCl2. It was concluded that SeO32- and SO32- are reduced in chloroplasts by independent light-requiring mechanisms. It is proposed that SeO32- is reduced by light-coupled GSH reductase and that the Se2- produced is incorporated into selenocysteine by cysteine synthase.  相似文献   
73.
74.
DNA topoisomerase (topo) II catalyses topological genomic changes essential for many DNA metabolic processes. It is also regarded as a structural component of the nuclear matrix in interphase and the mitotic chromosome scaffold. Mammals have two isoforms (alpha and beta) with similar properties in vitro. Here, we investigated their properties in living and proliferating cells, stably expressing biofluorescent chimera of the human isozymes. Topo IIalpha and IIbeta behaved similarly in interphase but differently in mitosis, where only topo IIalpha was chromosome associated to a major part. During interphase, both isozymes joined in nucleolar reassembly and accumulated in nucleoli, which seemed not to involve catalytic DNA turnover because treatment with teniposide (stabilizing covalent catalytic DNA intermediates of topo II) relocated the bulk of the enzymes from the nucleoli to nucleoplasmic granules. Photobleaching revealed that the entire complement of both isozymes was completely mobile and free to exchange between nuclear subcompartments in interphase. In chromosomes, topo IIalpha was also completely mobile and had a uniform distribution. However, hypotonic cell lysis triggered an axial pattern. These observations suggest that topo II is not an immobile, structural component of the chromosomal scaffold or the interphase karyoskeleton, but rather a dynamic interaction partner of such structures.  相似文献   
75.
Preparations that contain well-spread metaphase chromosomes are critical for plant cytogenetic analyses including chromosome counts, banding procedures, in situ hybridization, karyotyping and construction of ideograms. Chromosome spreading is difficult for plants with large and numerous chromosomes. We report here a technique for obtaining cytoplasm-free, well-spread metaphases from two Amaryllidaceae species: Sprekelia formosissima (2n = 120) and Hymenocallis howardii (2n = 96). The technique has three main steps: 1) pretreatment to cause chromosome condensation, 2) dripping onto tilted slides coated with a thin layer of pure acetic acid and 3) application of steam and acetic acid to produce cytoplasmic hydrolysis, which spreads the chromosomes.  相似文献   
76.
Progression through mitosis is associated with reversible phosphorylation of many nuclear proteins including that of the high-mobility group N (HMGN) nucleosomal binding protein family. Here we use immunofluorescence and in vitro nuclear import studies to demonstrate that mitotic phosphorylation of the nucleosomal binding domain (NBD) of the HMGN1 protein prevents its reentry into the newly formed nucleus in late telophase. By microinjecting wild-type and mutant proteins into the cytoplasm of HeLa cells and expressing these proteins in HmgN1(-/-) cells, we demonstrate that the inability to enter the nucleus is a consequence of phosphorylation and is not due to the presence of negative charges. Using affinity chromatography with recombinant proteins and nuclear extracts prepared from logarithmically growing or mitotically arrested cells, we demonstrate that phosphorylation of the NBD of HMGN1 promotes interaction with specific 14.3.3 isotypes. We conclude that mitotic phosphorylation of HMGN1 protein promotes interaction with 14.3.3 proteins and suggest that this interaction impedes the reentry of the proteins into the nucleus during telophase. Taken together with the results of previous studies, our results suggest a dual role for mitotic phosphorylation of HMGN1: abolishment of chromatin binding and inhibition of nuclear import.  相似文献   
77.
Antibody-dependent cellular cytotoxicity plays a pivotal role in antibody-based tumor therapies and is based on the recruitment of natural killer cells to antibody-bound tumor cells via binding of the Fcγ receptor III (CD16). Here we describe the generation of chimeric DNA aptamers that simultaneously bind to CD16α and c-Met, a receptor that is overexpressed in many tumors. By application of the systematic evolution of ligands by exponential enrichment (SELEX) method, CD16α specific DNA aptamers were isolated that bound with high specificity and affinity (91 pm-195 nm) to their respective recombinant and cellularly expressed target proteins. Two optimized CD16α specific aptamers were coupled to each of two c-Met specific aptamers using different linkers. Bi-specific aptamers retained suitable binding properties and displayed simultaneous binding to both antigens. Moreover, they mediated cellular cytotoxicity dependent on aptamer and effector cell concentration. Displacement of a bi-specific aptamer from CD16α by competing antibody 3G8 reduced cytotoxicity and confirmed the proposed mode of action. These results represent the first gain of a tumor-effective function of two distinct oligonucleotides by linkage into a bi-specific aptamer mediating cellular cytotoxicity.  相似文献   
78.
Analysis of biomarkers in synovial tissue is increasingly used in the evaluation of new targeted therapies for patients with rheumatoid arthritis (RA). This study determined the intrarater and inter-rater reliability of digital image analysis (DIA) of synovial biopsies from RA patients participating in clinical trials. Arthroscopic synovial biopsies were obtained before and after treatment from 19 RA patients participating in a randomized controlled trial with prednisolone. Immunohistochemistry was used to detect CD3+ T cells, CD38+ plasma cells and CD68+ macrophages. The mean change in positive cells per square millimetre for each marker was determined by different operators and at different times using DIA. Nonparametric tests were used to determine differences between observers and assessments, and to determine changes after treatment. The intraclass correlations (ICCs) were calculated to determine the intrarater and inter-rater reliability. Intrarater ICCs showed good reliability for measuring changes in T lymphocytes (R = 0.87), plasma cells (R = 0.62) and macrophages (R = 0.73). Analysis by Bland–Altman plots showed no systemic differences between measurements. The smallest detectable changes were calculated and their discriminatory power revealed good response in the prednisolone group compared with the placebo group. Similarly, inter-rater ICCs also revealed good reliability for measuring T lymphocytes (R = 0.68), plasma cells (R = 0.69) and macrophages (R = 0.72). All measurements identified the same cell types as changing significantly in the treated patients compared with the placebo group. The measurement of change in total positive cell numbers in synovial tissue can be determined reproducibly for various cell types by DIA in RA clinical trials.  相似文献   
79.
80.
R. -A. Walk  B. Hock 《Planta》1977,136(3):211-220
Molecular properties of the glyoxysomal and mitochondrial isoenzyme of malate dehydrogenase (EC 1.1.1.37; L-malate: NAD+ oxidoreductase) from watermelon cotyledons (Citrullus vulgaris Schrad.) were investigated, using completely purified enzyme preparations. The apparent molecular weights of the glyoxysomal and mitochondrial isoenzymes were found to be 67,000 and 74,000 respectively. Aggregation at high enzyme concentrations was observed with the glyoxysomal but not with the mitochondrial isoenzyme. Using sodium dodecyl sulfate electrophoresis each isoenzyme was found to be composed of two polypeptide chains of identical size (33,500 and 37,000, respectively). The isoenzymes differed in their isoelectric points (gMDH: 8,92, mMDH: 5.39), rate of heat inactivation (gMDH: 1/2 at 40°C=3.0 min; mMDH: stable at 40°C; 1/2 at 60°C=4.5 min), adsorption to dextran gels at low ionic strenght, stability against alkaline conditions and their pH optima for oxaloacetate reduction (gMDH: pH 6.6, mMDH: pH 7.5). Very similar pH optima, however, were observed for L-malate oxidation (pH 9.3–9.5). The results indicate that the glyoxysomal and mitochondrial MDH of watermelon cotyledons are distinct proteins of different structural composition.Abbreviations EDTA ethylene diamine tetraacetic acid - gMDH and mMDH glyoxysomal and mitochondrial malate dehydrogenase, respectively  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号