首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1342篇
  免费   245篇
  1587篇
  2016年   15篇
  2015年   27篇
  2014年   34篇
  2013年   50篇
  2012年   59篇
  2011年   38篇
  2010年   36篇
  2009年   33篇
  2008年   46篇
  2007年   36篇
  2006年   57篇
  2005年   35篇
  2004年   35篇
  2003年   50篇
  2002年   51篇
  2001年   54篇
  2000年   44篇
  1999年   54篇
  1998年   29篇
  1997年   25篇
  1996年   28篇
  1995年   19篇
  1994年   18篇
  1993年   17篇
  1992年   45篇
  1991年   30篇
  1990年   43篇
  1989年   32篇
  1988年   29篇
  1987年   29篇
  1986年   22篇
  1985年   32篇
  1984年   29篇
  1983年   24篇
  1982年   17篇
  1981年   16篇
  1980年   17篇
  1979年   21篇
  1978年   25篇
  1977年   18篇
  1976年   27篇
  1975年   28篇
  1974年   20篇
  1973年   20篇
  1972年   18篇
  1971年   15篇
  1970年   11篇
  1968年   14篇
  1967年   13篇
  1966年   17篇
排序方式: 共有1587条查询结果,搜索用时 15 毫秒
51.

Background

In humans and mice naturally occurring CD4+CD25+ regulatory T cells (nTregs) are a thymus-derived subset of T cells, crucial for the maintenance of peripheral tolerance by controlling not only potentially autoreactive T cells but virtually all cells of the adaptive and innate immune system. Recent work using Dicer-deficient mice irrevocably demonstrated the importance of miRNAs for nTreg cell-mediated tolerance.

Principal Findings

DNA-Microarray analyses of human as well as murine conventional CD4+ Th cells and nTregs revealed a strong up-regulation of mature miR-155 (microRNA-155) upon activation in both populations. Studying miR-155 expression in FoxP3-deficient scurfy mice and performing FoxP3 ChIP-Seq experiments using activated human T lymphocytes, we show that the expression and maturation of miR-155 seem to be not necessarily regulated by FoxP3. In order to address the functional relevance of elevated miR-155 levels, we transfected miR-155 inhibitors or mature miR-155 RNAs into freshly-isolated human and mouse primary CD4+ Th cells and nTregs and investigated the resulting phenotype in nTreg suppression assays. Whereas miR-155 inhibition in conventional CD4+ Th cells strengthened nTreg cell-mediated suppression, overexpression of mature miR-155 rendered these cells unresponsive to nTreg cell-mediated suppression.

Conclusion

Investigation of FoxP3 downstream targets, certainly of bound and regulated miRNAs revealed the associated function between the master regulator FoxP3 and miRNAs as regulators itself. miR-155 is shown to be crucially involved in nTreg cell mediated tolerance by regulating the susceptibility of conventional human as well as murine CD4+ Th cells to nTreg cell-mediated suppression.  相似文献   
52.
BACKGROUND : Selective serotonin reuptake inhibitors (SSRIs) have been suspected of cardiac teratogenicity, but reports have been inconsistent. Our aim was to investigate the rate of nonsyndromic congenital heart defects in newborns exposed in utero to SSRIs compared with unexposed controls. METHODS : This prospective study of women who gave birth at our tertiary center from 2000 to 2007 yielded 235 women who reported first‐trimester SSRI use during pregnancy. All newborns born during the study period and found to have a persistent cardiac murmur on day 2 or 3 of life were referred for examination by a pediatric cardiologist and by echocardiography. The findings were compared between the newborns who were exposed to SSRIs and those who were not. RESULTS : Nonsyndromic congenital heart defects were identified by echocardiography in 8 of 235 (3.40%) newborns exposed in utero to SSRIs and in 1083 of 67,636 (1.60%) non‐exposed newborns. The difference in prevalence between the two groups was significant (relative risk, 2.17; 95% confidence interval, 1.07–4.39). The prevalence rates for paroxetine and fluoxetine exposure were 4.3% and 3.0%, respectively. All cardiac defects in the study group were mild: ventricular septal defect (6), bicuspid aortic valve (1) and right superior vena cava to coronary sinus (1). CONCLUSIONS : Newborns exposed in utero to SSRIs, have a twofold higher risk of mild nonsyndromic heart defects than unexposed infants. The data suggest that women who require SSRI treatment during pregnancy can be reassured that the fetal risk is low and possible cardiac malformations will probably be mild. Late‐targeted ultrasound and fetal echocardiography at 22 to 23 weeks' gestation are recommended in this patient group. Birth Defects Research (Part A), 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
53.
Renal fibrosis is the common histological feature of advanced glomerular and tubulointerstitial disease leading to end-stage renal disease (ESRD). However, specific antifibrotic therapies to slow down the evolution to ESRD are still absent. Because persistent inflammation is a key event in the development of fibrosis, we hypothesized that the proinflammatory kinin B1 receptor (B1R) could be such a new target. Here we show that, in the unilateral ureteral obstruction model of renal fibrosis, the B1R is overexpressed and that delayed treatment with an orally active nonpeptide B1R antagonist blocks macrophage infiltration, leading to a reversal of the level of renal fibrosis. In vivo bone marrow transplantation studies as well as in vitro studies on renal cells show that part of this antifibrotic mechanism of B1R blockade involves a direct effect on resident renal cells by inhibiting chemokine CCL2 and CCL7 expression. These findings suggest that blocking the B1R is a promising antifibrotic therapy.  相似文献   
54.
A mutant simian virus 40 (SV40) large tumor (T) antigen bearing alanine instead of threonine at residue 124 (T124A) failed to replicate SV40 DNA in infected monkey cells (J. Schneider and E. Fanning, J. Virol. 62:1598-1605, 1988). We investigated the biochemical properties of T124A T antigen in greater detail by using purified protein from a baculovirus expression system. Purified T124A is defective in SV40 DNA replication in vitro, but does bind specifically to the viral origin under the conditions normally used for DNA replication. The mutant protein forms double-hexamer complexes at the origin in an ATP-dependent fashion, although the binding reaction requires somewhat higher protein concentrations than the wild-type protein. Binding of T124A protein results in local distortion of the origin DNA similar to that observed with the wild-type protein. These findings indicate that the replication defect of T124A protein is not due to failure to recognize and occupy the origin. Under some conditions T124A is capable of unwinding short origin DNA fragments. However, the mutant protein is almost completely defective in unwinding of circular plasmid DNA molecules containing the SV40 origin. Since the helicase activity of T124A is essentially identical to that of the wild-type protein, we conclude that the mutant is defective in the initial opening of the duplex at the origin, possibly as a result of altered hexamer-hexamer interactions. The phenotype of T124A suggests a possible role for phosphorylation of threonine 124 by cyclin-dependent kinases in controlling the origin unwinding activity of T antigen in infected cells.  相似文献   
55.
The involvement of the death adaptor protein FADD and the apoptosis-initiating caspase-8 in CD95 and TRAIL death signalling has recently been demonstrated by the analysis of the native death-inducing signalling complex (DISC) that forms upon ligand-induced receptor cross-linking. However, the role of caspase-10, the other death-effector-domain-containing caspase besides caspase-8, in death receptor signalling has been controversial. Here we show that caspase-10 is recruited not only to the native TRAIL DISC but also to the native CD95 DISC, and that FADD is necessary for its recruitment to and activation at these two protein complexes. With respect to the function of caspase-10, we show that it is not required for apoptosis induction. In addition, caspase-10 can not substitute for caspase-8, as the defect in apoptosis induction observed in caspase-8-deficient cells could not be rescued by overexpression of caspase-10. Finally, we demonstrate that caspase-10 is cleaved during CD95-induced apoptosis of activated T cells. These results show that caspase-10 activation occurs in primary cells, but that its function differs from that of caspase-8.  相似文献   
56.
目的筛选与Rap GAP相互作用的蛋白质,为进一步研究人源Rap1GAP介导的信号转导通路、揭示其与肿瘤的关系提供实验依据。方法选用与Rap1GAP同源的来自美丽线虫的Rap GAP作为饵蛋白,以来源于美丽线虫的c DNA文库作为靶蛋白,应用p PC97、p PC86组成的酵母双杂交系统筛选c DNA文库中与Rap GAP相互作用的蛋白质。结果通过营养缺陷平板(-LTH)筛选出63个拟似阳性菌落。经过Lac Z鉴定,19个菌落为阳性,其中7个为强阳性。提取来自19个酵母菌落中的重组DNA,经PCR扩增,12个菌落出现阳性结果。将该19个重组DNA分别电转化入DH5α细菌,涂板培养后,每板挑取4~10个克隆,通过Sal I和Not I双酶切鉴定进行阳性克隆筛选。将阳性克隆的重组DNA进行序列测定。测序结果与Gen Bank比较,其中4个克隆的DNA片段为Y39b6a基因片段、2个为Rap GAP、1个为苯丙氨酸-4-羟化酶、1个为细胞色素C氧化酶,还有1个DNA片段编码美丽线虫特有的小分子蛋白的基因片段,其余11个DNA片段不编码已知蛋白质。结论初步筛选出与Rap GAP相互作用的蛋白质,特别是其中有2个克隆为Rap GAP,提示Rap GAP可能以二聚体的方式存在。  相似文献   
57.
Complement activation represents a crucial innate defense mechanism to invading microorganisms, but there is an eminent lack of understanding of the separate contribution of the different complement activation pathways to the host response during sepsis. We therefore investigated different innate host immune responses during cecal ligation and puncture (CLP)-induced sepsis in mice lacking either the alternative (fD(-/-)) or classical (C1q(-/-)) complement activation pathway. Both knockout mice strains showed a significantly reduced survival and increased organ dysfunction when compared with control mice. Surprisingly, fD(-/-) mice demonstrated a compensated bacterial clearance capacity as control mice at 6 h post CLP, whereas C1q(-/-) mice were already overwhelmed by bacterial growth at this time point. Interestingly, at 24 h after CLP, fD(-/-) mice failed to clear bacteria in a way comparable to control mice. However, both knockout mice strains showed compromised C3 cleavage during sepsis. Investigating potential causes for this discrepancy, we were able to demonstrate that despite normal bacterial clearance capacity early during the onset of sepsis, fD(-/-) mice displayed increased inflammatory cytokine generation and neutrophil recruitment into lungs and blood when compared with both control- and C1q(-/-) mice, indicating a potential loss of control over these immune responses. Further in vitro experiments revealed a strongly increased Nf-κB activation capacity in isolated neutrophils from fD(-/-) mice, supporting this hypothesis. Our results provide evidence for the new concept that the alternative complement activation pathway exerts a distinctly different contribution to the innate host response during sepsis when compared with the classical pathway.  相似文献   
58.

Background

It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5''-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most other members of this diverse and ubiquitous family lack defined functions.

Results

Phylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5''-phosphate-dependent enzymes, which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate.

Conclusions

Like the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal 5''-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze imines and thus remain mysterious.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1584-3) contains supplementary material, which is available to authorized users.  相似文献   
59.
60.
BackgroundProprotein convertase subtilisin/kexin type 9 (PSCK9) is secreted mainly from the liver and binds to the low-density lipoprotein receptor (LDLR), reducing LDLR availability and thus resulting in an increase in LDL-cholesterol. While the LDLR has been implicated in the cell entry process of the hepatitis C virus (HCV), overexpression of an artificial non-secreted, cell membrane-bound form of PCSK9 has also been shown to reduce surface expression of CD81, a major component of the HCV entry complex, leading to concerns that pharmacological inhibition of PCSK9 may increase susceptibility to HCV infection by increasing either CD81 or LDLR availability. Here, we evaluated effects of PCSK9 and PCSK9 blockade on CD81 levels and HCV entry with a physiologically relevant model using native secreted PCSK9 and a monoclonal antibody to PCSK9, alirocumab.ConclusionThese results suggest that inhibition of PCSK9 with alirocumab has no effect on CD81 and does not result in increased susceptibility to HCV entry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号