首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   606篇
  免费   73篇
  679篇
  2021年   7篇
  2019年   5篇
  2017年   9篇
  2016年   8篇
  2015年   18篇
  2014年   11篇
  2013年   25篇
  2012年   30篇
  2011年   29篇
  2010年   19篇
  2009年   25篇
  2008年   18篇
  2007年   25篇
  2006年   21篇
  2005年   17篇
  2004年   20篇
  2003年   18篇
  2002年   18篇
  2001年   28篇
  2000年   21篇
  1999年   16篇
  1998年   15篇
  1997年   7篇
  1996年   10篇
  1995年   7篇
  1994年   5篇
  1993年   7篇
  1992年   17篇
  1991年   14篇
  1990年   18篇
  1989年   7篇
  1988年   14篇
  1987年   12篇
  1986年   9篇
  1985年   13篇
  1983年   5篇
  1982年   8篇
  1981年   9篇
  1980年   8篇
  1979年   9篇
  1978年   8篇
  1977年   8篇
  1976年   4篇
  1971年   3篇
  1969年   5篇
  1968年   4篇
  1967年   3篇
  1944年   4篇
  1917年   3篇
  1914年   3篇
排序方式: 共有679条查询结果,搜索用时 15 毫秒
51.
Proper levels of gene expression are important for normal mammalian development. Typically, altered gene dosage caused by karyotypic abnormalities results in embryonic lethality or birth defects. Segmental aneuploidy can be compatible with life but often results in contiguous gene syndromes. The ability to manipulate the mouse genome allows the systematic exploration of regions that are affected by alterations in gene dosage. To explore the effects of segmental haploidy in the mouse t complex on chromosome 17, radiation-induced deletion complexes centered at the Sod2 and D17Leh94 loci were generated in embryonic stem (ES) cells. A small interval was identified that, when hemizygous, caused specific embryonic lethal phenotypes (exencephaly and edema) in most fetuses. The penetrance of these phenotypes was background dependent. Additionally, evidence for parent-of-origin effects was observed. This genetic approach should be useful for identifying genes that are imprinted or whose dosage is critical for normal embryonic development.  相似文献   
52.
The heteromeric lymphotoxin alphabeta ligand (LT) binds to the LTbeta receptor (LTbetaR) and provides an essential trigger for lymph node (LN) development. LTbetaR signaling is also critical for the emergence of pathological ectopic lymph node-like structures and the maintenance of an organized splenic white pulp. To better understand the role of LT in development, the expression patterns of LTbeta and LTbetaR mRNA were examined by in situ hybridization in the developing mouse embryo. Images of LTbeta ligand expression in developing peripheral LN in the E18.5 embryo revealed a relatively early phase structure and allowed for comparative staging with LN development in rat and humans. The LTbetaR is expressed from E16.5 onward in respiratory, salivary, bronchial, and gastric epithelium, which may be consistent with early communication events between lymphoid elements and epithelial specialization over emerging mucosal LN. Direct comparison of mouse fetal and adult tissues by FACS analysis confirmed the elevated expression of LTBR in some embryonic epithelial layers. Therefore, surface LTBR expression may be elevated during fetal development in some epithelial layers.  相似文献   
53.
Much of the efficiency of the immune system is attributed to the high degree of spatial and temporal organization in the secondary lymphoid organs. Signalling through the lymphotoxin (LT) pathway is a crucial element in the maintenance of this organized microenvironment. The effect of altering lymphoid microenvironments on immune responses remains relatively unexplored. Inhibitors of the LT and LIGHT pathways have been shown to reduce disease in a wide range of autoimmune models. This approach has provided a tool to probe the effect of manipulation of the microenvironment on both normal and pathological immune responses.  相似文献   
54.
Cyclic nucleotide phosphodiesterases (PDEs) catalyze the hydrolysis of cAMP and cGMP, thereby participating in regulation of the intracellular concentrations of these second messengers. The PDE1 family is defined by regulation of activity by calcium and calmodulin. We have cloned and characterized the mouse PDE1B gene, which encodes the 63-kDa calcium/calmodulin-dependent PDE (CaM-PDE), an isozyme that is expressed in the CNS in the olfactory tract, dentate gyrus, and striatum and may participate in learning, memory, and regulation of phosphorylation of DARPP-32 in dopaminergic neurons. We screened an I-129/SvJ mouse genomic library and identified exons 2–13 of the PDE1B gene that span 8.4 kb of genomic DNA. Exons range from 67 to 205 nucleotides and introns from 91 to 2250 nucleotides in length. Exon 1 was not present in the 3 kb of genomic DNA 5′ to exon 2 in our clones. The mouse PDE1B gene shares many similar or identical exon boundaries as well as considerable sequence identity with the rat PDE4B and PDE4D genes and the Drosophila dunce cAMP-specific PDE gene dnc, suggesting that these genes all arose from a common ancestor. Using fluorescence in situ hybridization, we localized the PDE1B gene to the distal tip of mouse Chromosome (Chr) 15. Received: 10 November 1997 / Accepted: 12 March 1998  相似文献   
55.
The genomic RNA of tobacco mosaic virus (TMV), like that of other positive-strand RNA viruses, acts as a template for both translation and replication. The highly structured 3' untranslated region (UTR) of TMV RNAs plays an important role in both processes; it is not polyadenylated but ends with a tRNA-like structure (TLS) preceded by a conserved upstream pseudoknot domain (UPD). The TLS of tobamoviral RNAs can be specifically aminoacylated and, in this state, can interact with eukaryotic elongation factor 1A (eEF1A)/GTP with high affinity. Using a UV cross-linking assay, we detected another specific binding site for eEF1A/GTP, within the UPDs of TMV and crucifer-infecting tobamovirus (crTMV), that does not require aminoacylation. A mutational analysis revealed that UPD pseudoknot conformation and some conserved primary sequence elements are required for this interaction. Its possible role in the regulation of tobamovirus gene expression and replication is discussed.  相似文献   
56.
Background: The human SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays essential roles in a variety of cellular processes and has been implicated in human cancer. However, the role of germline genetic variants in this complex in relation to cancer risk is not well studied. Methods: We assessed the association of 16 variants in the catalytic subunits (SMARCA2 and SMARCA4) of the SWI/SNF complex with the risk of glioma subtypes (lower grade astrocytoma, oligodendroglioma and glioblastoma [GBM]) and with mortality from high-grade tumors (GBM) in a multicenter US case–control study that included 561 cases and 574 controls. Associations were estimated with odds ratios (OR, for risk) or hazards ratios (HR, for mortality) with 95% confidence intervals (CI). False discovery rate (FDR-q) was used to control for multiple testing in risk associations. Results: None of the investigated SNPs was associated with overall glioma risk. However, analyses according to histological subtypes revealed a statistically significant increased risk of oligodendroglioma in association with SMARCA2 rs2296212 (OR = 4.05, 95%CI = 1.11–14.80, P = 0.030, q = 0.08) and rs4741651 (OR = 4.68, 95%CI = 1.43–15.30, P = 0.011, q = 0.08) and SMARCA4 rs11672232 (OR = 1.90, 95%CI = 1.01–3.58, P = 0.048, q = 0.08) and rs12232780 (OR = 2.14, 95%CI = 1.06–4.33, P = 0.035, q = 0.08). No significant risk associations were observed for GBM or lower grade astrocytoma. Suggestive associations with GBM mortality were not validated in the Cancer Genome Atlas. Conclusion: Our findings suggest that genetic variants in SMARCA2 and SMARCA4 influence the risk of oligodendroglioma. Further research is warranted on the SWI/SNF complex genes and epigenetic mechanisms more generally in the development of glioma in adults.  相似文献   
57.
Approximately one-third of the U.S. population has nonalcoholic fatty liver disease (NAFLD), a condition closely associated with insulin resistance and increased risk of liver injury. Dysregulated mitochondrial metabolism is central in these disorders, but the manner and degree of dysregulation are disputed. This study tested whether humans with NAFLD have abnormal in vivo hepatic mitochondrial metabolism. Subjects with low (3.0%) and high (17%) intrahepatic triglyceride (IHTG) were studied using (2)H and (13)C tracers to evaluate systemic lipolysis, hepatic glucose production, and mitochondrial pathways (TCA cycle, anaplerosis, and ketogenesis). Individuals with NAFLD had 50% higher rates of lipolysis and 30% higher rates of gluconeogenesis. There was a positive correlation between IHTG content and both mitochondrial oxidative and anaplerotic fluxes. These data indicate that mitochondrial oxidative metabolism is ~2-fold greater in those with NAFLD, providing a potential link between IHTG content, oxidative stress, and liver damage.  相似文献   
58.
Genotype imputation has the potential to assess human genetic variation at a lower cost than assaying the variants using laboratory techniques. The performance of imputation for rare variants has not been comprehensively studied. We utilized 8865 human samples with high depth resequencing data for the exons and flanking regions of 202 genes and Genome-Wide Association Study (GWAS) data to characterize the performance of genotype imputation for rare variants. We evaluated reference sets ranging from 100 to 3713 subjects for imputing into samples typed for the Affymetrix (500K and 6.0) and Illumina 550K GWAS panels. The proportion of variants that could be well imputed (true r2>0.7) with a reference panel of 3713 individuals was: 31% (Illumina 550K) or 25% (Affymetrix 500K) with MAF (Minor Allele Frequency) less than or equal 0.001, 48% or 35% with 0.0010.05. The performance for common SNPs (MAF>0.05) within exons and flanking regions is comparable to imputation of more uniformly distributed SNPs. The performance for rare SNPs (0.01相似文献   
59.
The intracellular milieu of chondroctyes is regulated by an array of proteins in the cell membrane which operate as transport pathways, allowing ions and nutrients such as glucose and amino acids and metabolites such as lactate to cross the plasma membrane. Here we investigated the influence of hydrostatic pressure on intracellular calcium concentrations ([Ca(2+)](i)) in isolated bovine articular chondrocytes. We found that short applications of high hydrostatic pressures led to a significant increase in [Ca(2+)](i). The pressure-induced rise was abolished for long (240 sec) but not short (30 sec) pressure applications by removal of extracellular Ca(2+). The rise in pressure was also blocked by the inhibitors neomycin and thapsigargin confirming that pressure, by generating IP(3), led to an increase in [Ca(2+)](i) by mobilising the pool of Ca(2+) ions contained within intracellular stores. We also found that intracellular [Na(+)] was affected by a rise in osmotic pressure and further affected by application of hydrostatic pressure. The effect of hydrostatic pressure on sulphate incorporation depended strongly on extracellular osmolality. Since significant gradients in extracellular osmolality exist across intact cartilage, the results imply that responses of chondrocytes to the same pressure will vary depending on location in the joint. The results also indicate that hydrostatic pressures can affect several different transporter systems thus influencing the intracellular milieu and chondrocyte metabolism.  相似文献   
60.
The relationship between intracellular lysosomal rupture and cell death caused by silica was studied in P388d(1) macrophages. After 3 h of exposure to 150 μg silica in medium containing 1.8 mM Ca(2+), 60 percent of the cells were unable to exclude trypan blue. In the absence of extracellular Ca(2+), however, all of the cells remained viable. Phagocytosis of silica particles occurred to the same extent in the presence or absence of Ca(2+). The percentage of P388D(1) cells killed by silica depended on the dose and the concentration of Ca(2+) in the medium. Intracellular lyosomal rupture after exposure to silica was measured by acridine orange fluorescence or histochemical assay of horseradish peroxidase. With either assay, 60 percent of the cells exposed to 150 μg silica for 3 h in the presence of Ca(2+) showed intracellular lysosomal rupture, was not associated with measureable degradation of total DNA, RNA, protein, or phospholipids or accelerated turnover of exogenous horseradish peroxidase. Pretreatment with promethazine (20 μg/ml) protected 80 percent of P388D(1) macrophages against silica toxicity although lysosomal rupture occurred in 60-70 percent of the cells. Intracellular lysosomal rupture was prevented in 80 percent of the cells by pretreatment with indomethacin (5 x 10(-5)M), yet 40-50 percent of the cells died after 3 h of exposure to 150 μg silica in 1.8 mM extracellular Ca(2+). The calcium ionophore A23187 also caused intracellular lysosomal rupture in 90-98 percent of the cells treated for 1 h in either the presence or absence of extracellular Ca(2+). With the addition of 1.8 mM Ca(2+), 80 percent of the cells was killed after 3 h, whereas all of the cells remained viable in the absence of Ca(2+). These experiments suggest that intracellular lysosomal rupture is not causally related to the cell death cause by silica or A23187. Cell death is dependent on extracellular Ca(2+) and may be mediated by an influx of these ions across the plasma membrane permeability barrier damaged directly by exposure to these toxins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号