首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   34篇
  国内免费   1篇
  2023年   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   12篇
  2000年   9篇
  1999年   13篇
  1998年   3篇
  1997年   1篇
  1996年   5篇
  1995年   5篇
  1993年   3篇
  1992年   7篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   3篇
  1986年   7篇
  1984年   4篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   6篇
  1975年   1篇
  1974年   6篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   3篇
  1966年   1篇
排序方式: 共有194条查询结果,搜索用时 187 毫秒
41.
In the photochemical cycle of bacteriorhodopsin, the light-driven proton pump of halobacteria, only the first step, the isomerization of the all-trans retinal to 13-cis, is dependent on illumination. Because the steps that accomplish the translocation of a proton during the ensuing reaction sequence of intermediate states are thermal reactions, they have direct analogies with such steps in other ion pumps. In a surprisingly large number of cases, the reactions of the photocycle could be studied without using light. This review recounts experiments of this kind, and what they contribute to understanding the transport mechanism of this pump, and perhaps indirectly other ion pumps as well.  相似文献   
42.
Lanyi JK 《FEBS letters》1999,464(3):103-107
Recent crystallographic information about the structure of bacteriorhodopsin and some of its photointermediates, together with a large amount of spectroscopic and mutational data, suggest a mechanistic model for how this protein couples light energy to the translocation of protons across the membrane. Now nearing completion, this detailed molecular model will describe the nature of the steric and electrostatic conflicts at the photoisomerized retinal, as well as the means by which it induces proton transfers in the two half-channels leading to the two membrane surfaces, thereby causing unidirectional, uphill transport.  相似文献   
43.
The photocycle of salinarum halorhodopsin was investigated in the presence of azide. The azide binds to the halorhodopsin with 150 mM binding constant in the absence of chloride and with 250 mM binding constant in the presence of 1 M chloride. We demonstrate that the azide-binding site is different from that of chloride, and the influence of chloride on the binding constant is indirect. The analysis of the absorption kinetic signals indicates the existence of two parallel photocycles. One belongs to the 13-cis retinal containing protein and contains a single red shifted intermediate. The other photocycle, of the all-trans retinal containing halorhodopsin, resembles the cycle of bacteriorhodopsin and contains a long-living M intermediate. With time-resolved spectroscopy, the spectra of intermediates were determined. Intermediates L, N, and O were not detected. The multiexponential rise and decay of the M intermediate could be explained by the introduction of the "spectrally silent" intermediates M1, M2, and HR', HR, respectively. The electric signal measurements revealed the existence of a component equivalent with a proton motion toward the extracellular side of the membrane, which appears during the M1 to M2 transition. The differences between the azide-dependent photocycle of salinarum halorhodopsin and pharaonis halorhodopsin are discussed.  相似文献   
44.
In the recently proposed local-access model for proton transfers in the bacteriorhodopsin transport cycle (Brown et al. 1998. Biochemistry. 37:3982-3993), connection between the retinal Schiff base and Asp85 (in the extracellular direction) and Asp96 (in the cytoplasmic direction)is maintained as long as the retinal is in its photoisomerized state. The directionality of the proton translocation is determined by influences in the protein that make Asp85 a proton acceptor and, subsequently, Asp96 a proton donor. The idea of concurrent local access of the Schiff base in the two directions is now put to a test in the photocycle of the D115N/D96N mutant. The kinetics had suggested that there is a single sequence of intermediates, L<-->M1<-->M2<-->N, and the M2-->M1 reaction depends on whether a proton is released to the extracellular surface. This is now confirmed. We find that at pH 5, where proton release does not occur, but not at higher pH, the photostationary state created by illumination with yellow light contains not only the M1 and M2 states, but also the L and the N intermediates. Because the L and M1 states decay rapidly, they can be present only if they are in equilibrium with later intermediates of the photocycle. Perturbation of this mixture with a blue flash caused depletion of the M intermediate, followed by its partial recovery at the expense of the L state. The change in the amplitude of the C=O stretch band at 1759 cm-1 demonstrated protonation of Asp85 in this process. Thus, during the reequilibration the Schiff base lost its proton to Asp85. Because the N state, also present in the mixture, arises by protonation of the Schiff base from the cytoplasmic surface, these results fulfill the expectation that under the conditions tested the extracellular access of the Schiff base would not be lost at the time when there is access in the cytoplasmic direction. Instead, the connectivity of the Schiff base flickers rapidly (with the time constant of the M1<-->M2 equilibration) between the two directions during the entire L-to-N segment of the photocycle.  相似文献   
45.
Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na-gradient. Sodium-activated amino acid transport for 18 of these amino acids has been shown to occur in direct response to the protonmotive force generated. Glutamate is transported only in response to a sodium gradient. Michaelis constants for the uptake of these amino acids are close or identical whether the amino acids are accumulated in response to a sodium gradient or a protonmotive force (i.e., electrical gradient). On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids, i.e., arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.  相似文献   
46.
Illumination of cell envelope vesicles from H. halobium causes the development of protonmotive force and energizes the uphill transport of glutamate. Although the uncoupler, p-trifluoromethoxycarbonyl cyanide phenylhydrazone (FCCP), and the membrane-permeant cation, triphenylmethylphosphonium (TPMP+), are inhibitory to the effect of light, the time course and kinetics of the production of the energized state for transport, and its rate of decay after illumination, are inconsistent with the idea that glutamate accumulation is driven directly by the protonmotive force. Similarities between the light-induced transport and the Na+-gradient-induced transport of glutamate in these vesicles suggest that the energized state for the amino acid uptake in both cases consists of a transmembrane Na+ gradient (Na+out/Na+in greater than 1). Rapid efflux of 22Na from the envelope vesicles is induced by illumination. FCCP and TPMP+ inhibit the light-induced efflux of Na+ but accelerate the post-illumination relaxation of the Na+ gradient created, suggesting electrogenic antiport of Na+ with another cation, or electrogenic symport with an anion. The light-induced protonmotive force in the H. halobium cell envelope vesicles is thus coupled to Na+ efflux and thereby indirectly to glutamate uptake as well.  相似文献   
47.
Cell envelope vesicles, prepared from Halobacterium halobium, were loaded with 3 M KCl suspended in 3 M NaCl, and the loss of K+ was followed at various temperatures. The Arrhenius plot of the K+-efflux rates shows a break at 30°C, with higher energy of activation above the break. This temperature dependence is consistent with earlier studies of chain motions in liposomes prepared from isolated lipids. The efflux of K+ is more rapid with increasing pH between pH 5 and 7. Since these vesicles do not respire under the experimental conditions it was expected that the K+-efflux data would be related to the passive permeability of the membranes to K+. The apparent K+ permeability at 30°C is 1–2· 10?10 cm·?1. This value corresponds to a 5-h half-life for retained K+ in the envelope vesicles and to a probably much longer half-life in whole cells. The previously observed ability of Halobacterium to retain K+ in the absence of metabolism can thus be explained solely by the permeability characteristics of the membranes.  相似文献   
48.
We have recorded (13)C NMR spectra of [3-(13)C]Ala-labeled wild-type bacteriorhodopsin (bR) and its mutants at Arg(82), Asp(85), Glu(194), and Glu(204) along the extracellular proton transfer chain. The upfield and downfield displacements of the single carbon signals of Ala(196) (in the F-G loop) and Ala(126) (at the extracellular end of helix D), respectively, revealed conformational differences in E194D, E194Q, and E204Q from the wild type. The same kind of conformational change at Ala(126) was noted also in the Y83F mutant, which lacks the van der Waals contact between Tyr(83) and Ala(126) present in the wild type. The absence of a negative charge at Asp(85) in the site-directed mutant D85N induced global conformational changes, as manifested in displacements or suppression of peaks from the transmembrane helices, cytoplasmic loops, etc., as well as the local changes at Ala(126) and Ala(196) seen in the other mutants. Unexpectedly, no conformational change at Ala(126) was observed in R82Q (even though Asp(85) is protonated at pH 6) or in D85N/R82Q. The changes induced in the Ala(126) signal when Asp(85) is uncharged could be interpreted therefore in terms of displacement of the positive charge of Arg(82) toward Tyr(83), where Ala(126) is located. It is possible that disruption of the proton transfer chain after protonation of Asp(85) in the photocycle could cause the same kind of conformational change we detect at Ala(196) and Ala(126). If so, the latter change would be also the result of rearrangement of the side chain of Arg(82).  相似文献   
49.
Proteorhodopsin, a retinal protein of marine proteobacteria similar to bacteriorhodopsin of the archaea, is a light-driven proton pump. Absorption of a light quantum initiates a reaction cycle (turnover time of ca. 50 ms), which includes photoisomerization of the retinal from the all-trans to the 13-cis form and transient deprotonation of the retinal Schiff base, followed by recovery of the initial state. We report here that in addition to this fast cyclic conversion, illumination at high pH results in accumulation of a long-lived photoproduct absorbing at 362 nm. This photoconversion is much more efficient in the D227N mutant in which the anionic Asp227, which together with Asp97 constitutes the Schiff base counterion, is replaced with a neutral residue. Upon illumination at pH 8.5, most of the D227N pigment is converted to the 362 nm species, with a quantum efficiency of ca. 0.2. The pK(a) for this transition in the wild type is 9.6, but decreased to 7.5 after mutation of Asp227. The short wavelength of the absorption maximum of the photoproduct indicates that it has a deprotonated Schiff base. In the dark, this photoproduct is converted back to the initial pigment with a time constant of 30 min (in D227N, at pH 8.5), but it can be reconverted more rapidly by illumination with near-UV light. Experiments with "locked" retinal analogues which selectively exclude rotation around either the C9=C10, C11=C12, or C13=C14 bond show that formation of the 362 nm species involves isomerization around the C13=C14 bond. In agreement with this, retinal extraction indicates that the 362 nm photoproduct is 13-cis whereas the initial state is predominantly all-trans. A rapid shift of the pH from 8.5 to 4 greatly accelerates thermal reconversion of the 362 nm species to the initial pigment, suggesting that its recovery involving the thermal isomerization of the chromophore is controlled by ionizable residues, primarily the Schiff base and Asp97. The transformation to the long-lived 362 nm photoproduct is apparently a side reaction of the photocycle, a response to high pH, caused by alteration of the normal reprotonation and reisomerization pathway of the Schiff base.  相似文献   
50.
Recent advances in the determination of the X-ray crystallographic structures of bacteriorhodopsin, and some of its photointermediates, reveal the nature of the linkage between the relaxation of electrostatic and steric conflicts at the retinal and events elsewhere in the protein. The transport cycle can be now understood in terms of specific and well-described displacements of hydrogen-bonded water, and main-chain and side-chain atoms, that lower the pK(a)s of the proton release group in the extracellular region and Asp-96 in the cytoplasmic region. Thus, local electrostatic conflict of the photoisomerized retinal with Asp-85 and Asp-212 causes deprotonation of the Schiff base, and results in a cascade of events culminating in proton release to the extracellular surface. Local steric conflict of the 13-methyl group with Trp-182 causes, in turn, a cascade of movements in the cytoplasmic region, and results in reprotonation of the Schiff base. Although numerous questions concerning the mechanism of each of these proton (or perhaps hydroxyl ion) transfers remain, the structural results provide a detailed molecular explanation for how the directionality of the ion transfers is determined by the configurational relaxation of the retinal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号