首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   34篇
  国内免费   1篇
  2023年   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   12篇
  2000年   9篇
  1999年   13篇
  1998年   3篇
  1997年   1篇
  1996年   5篇
  1995年   5篇
  1993年   3篇
  1992年   7篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   3篇
  1986年   7篇
  1984年   4篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   6篇
  1975年   1篇
  1974年   6篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   3篇
  1966年   1篇
排序方式: 共有194条查询结果,搜索用时 303 毫秒
11.
以牡丹江地区的白牛槭(Acer mandshuricum)、茶条槭(Acer tataricum subsp. ginnala.)、糖槭(Acer saccharum)、五角槭(Acer pictum subsp. mono)4种槭树为研究对象,分别于春季、夏季和秋季进行取样,测定叶片性状指标(叶厚度、气孔长度、气孔宽度、气孔密度、叶脉密度、比叶面积及色素质量分数),分析叶片各性状的季节变化趋势,并探讨色素与叶性状间在不同季节下的关系。结果如下(:1)4种槭树均表现为在夏季具有较高的叶厚度、较低的比叶面积和气孔密度,在秋季具较高的比叶面积和叶脉密度、较低的叶厚度。(2)4种槭树均为在夏季有较高的叶绿素a、b,在秋季色素质量分数均降低,季节变化区间分别为叶绿素a 77.40%~98.80%,叶绿素b 85.60%~99.53%,类胡萝卜素4.29%~78.52%。(3)色素与叶性状关系密切,季节动态下色素与比叶面积、气孔密度、叶脉密度正相关,与叶厚度、气孔长度、气孔宽度负相关(P<0.05),但不同季节相关性略有差异。4种彩叶植物的叶片在应对不同季节的气候条件时形成了不同的构建策略...  相似文献   
12.
At pH >7, proteorhodopsin functions as an outward-directed proton pump in cell membranes, and Asp-97 and Glu-108, the homologues of the Asp-85 and Asp-96 in bacteriorhodopsin, are the proton acceptor and donor to the retinal Schiff base, respectively. It was reported, however [Friedrich, T. et al. (2002) J. Mol. Biol., 321, 821-838], that proteorhodopsin transports protons also at pH <7 where Asp-97 is protonated and in the direction reverse from that at higher pH. To explore the roles of Asp-97 and Glu-108 in the proposed pumping with variable vectoriality, we compared the photocycles of D97N and E108Q mutants, and the effects of azide on the photocycle of the E108Q mutant, at low and high pH. Unlike at high pH, at a pH low enough to protonate Asp-97 neither the mutations nor the effects of azide revealed evidence for the participation of the acidic residues in proton transfer, and as in the photocycle of the wild-type protein, no intermediate with unprotonated Schiff base accumulated. In view of these findings, and the doubts raised by absence of charge transfer after flash excitation at low pH, we revisited the question whether transport occurs at all under these conditions. In both oriented membrane fragments and liposomes reconstituted with proteorhodopsin, we found transport at high pH but not at low pH. Instead, proton transport activity followed the titration curve for Asp-97, with an apparent pK(a) of 7.1, and became zero at the pH where Asp-97 is fully protonated.  相似文献   
13.
Proton transfers in the photochemical reaction cycle of proteorhodopsin   总被引:2,自引:0,他引:2  
The spectral and photochemical properties of proteorhodopsin (PR) were determined to compare its proton transport steps to those of bacteriorhodopsin (BR). Static and time-resolved measurements on wild-type PR and several mutants were done in the visible and infrared (FTIR and FT-Raman). Assignment of the observed C=O stretch bands indicated that Asp-97 and Glu-108 serve as the proton acceptor and donor, respectively, to the retinal Schiff base, as do the residues at corresponding positions in BR, but there are numerous spectral and kinetic differences between the two proteins. There is no detectable dark-adaptation in PR, and the chromophore contains nearly entirely all-trans retinal. Because the pK(a) of Asp-97 is relatively high (7.1), the proton-transporting photocycle is produced only at alkaline pH. It contains at least seven transient states with decay times in the range from 10 micros to 200 ms, but the analysis reveals only three distinct spectral forms. The first is a red-shifted K-like state. Proton release does not occur during the very slow (several milliseconds) rise of the second, M-like, intermediate, consistent with lack of the residues facilitating extracellular proton release in BR. Proton uptake from the bulk, presumably on the cytoplasmic side, takes place prior to release (tau approximately 2 ms), and coincident with reprotonation of the retinal Schiff base. The intermediate produced by this process contains 13-cis retinal as does the N state of BR, but its absorption maximum is red-shifted relative to PR (like the O state of BR). The decay of this N-like state is coupled to reisomerization of the retinal to all-trans, and produces a state that is O-like in its C-C stretch bands, but has an absorption maximum apparently close to that of unphotolyzed PR.  相似文献   
14.
15.
Similarly to bacteriorhodopsin, proteorhodopsin that normally contains all-trans and 13-cis retinal is transformed at low pH to a species containing 9-cis retinal under continuous illumination at lambda > 530 nm. This species, absorbing around 430 nm, returns thermally in tens of minutes to initial pigment and can be reconverted also with blue-light illumination. The yield of the 9-cis species is negligibly small at neutral pH but increases manyfold (>100) at acid pH with a pK(a) of 2.6. This indicates that protonation of acidic group(s) alters the photoreaction pathway that leads normally to all-trans --> 13-cis isomerization. In the D97N mutant, in which one of the two acidic groups in the vicinity of the retinal Schiff base is not ionizable, the yield of 9-cis species at low pH shows a pH dependence similar to that in the wild-type but with a somewhat increased pK(a) of 3.3. In contrast to this relatively minor effect, replacement of the other acidic group, Asp227, with Asn results in a remarkable, more than 50-fold, increase in the yield of the light-induced formation of 9-cis species in the pH range 4-6. It appears that protonation of Asp227 at low pH is what causes the dramatic increase in the yield of the 9-cis species in wild-type proteorhodopsin. We conclude that the photoisomerization pathways in proteorhodopsin to 13-cis or 9-cis photoproducts are controlled by the charge state of Asp227.  相似文献   
16.
In the last few years, three laboratories have reported three entirely different crystallographic models for the L photointermediate of bacteriorhodopsin. All are from X-ray diffraction of illuminated crystals that contain L in photostationary states created at similar cryogenic temperatures. This article compares the models and their implications, the crystallographic statistics and the methods used to derive them, as well as their agreement with non-crystallographic information.  相似文献   
17.
Human EAT-2 (SH2D1B) and SLAM-associated protein (SAP) (SH2D1A) are single SH2-domain adapters, which bind to specific tyrosine residues in the cytoplasmic tail of six signaling lymphocytic activation molecule (SLAM) (SLAMF1)-related receptors. Here we report that, unlike in humans, the mouse and rat Eat2 genes are duplicated with an identical genomic organization. The coding regions of the mouse Eat2a and Eat2b genes share 91% identity at the nucleotide level and 84% at the protein level; similarly, segments of introns are highly conserved. Whereas expression of mouse Eat2a mRNA was detected in multiple tissues, Eat2b was only detectable in mouse natural killer cells, CD8+ T cells, and ovaries, suggesting a very restricted tissue expression of the latter. Both the EAT-2A and EAT-2B coimmunoprecipitated with mouse SLAM in transfected cells and augmented tyrosine phosphorylation of the cytoplasmic tail of SLAM. Both EAT-2A and EAT-2B bind to the Src-like kinases Fyn, Hck, Lyn, Lck, and Fgr, as determined by a yeast two-hybrid assay. However, unlike SAP, the EAT-2 proteins bind to their kinase domains and not to the SH3 domain of these kinases. Taken together, the data suggest that both EAT-2A and EAT-2B are adapters that recruit Src kinases to SLAM family receptors using a mechanism that is distinct from that of SAP. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users. S. Calpe and E. Erdős contributed equally to this work  相似文献   
18.
An overview of the basic principles of photochemistry is presented to facilitate discussion of fluorescence, quenching and quantum yields. These topics in turn provide the foundation for an account of fluorescence spectroscopy and its application to microscopy. A brief overview of light microscopy and the application of fluorescence microscopy is given. The influences of molecular features, such as aromatic character and substitution patterns, on color and fluorescence are described. The concept of color fading is considered with particular reference to its effect on microscopic preparations. A survey of representative fluorescent probes is provided, and their sensitivity, application, and limitations are described. The phototoxicity of fluorescent molecules is discussed using biomembranes and DNA as examples of targets of toxicity. Photodynamic therapy, a relatively new clinical application of phototoxicity, is described. Both anticancer and antimicrobial applications are noted, and an assessment is given of the current ideas on the ideal physicochemical properties of the sensitizing agents for such applications.  相似文献   
19.
Sensory rhodopsin II (SRII) is unique among the archaeal rhodopsins in having an absorption maximum near 500 nm, blue shifted roughly 70 nm from the other pigments. In addition, SRII displays vibronic structure in the lambda(max) absorption band, whereas the other pigments display fully broadened band maxima. The molecular origins responsible for both photophysical properties are examined here with reference to the 2.4 A crystal structure of sensory rhodopsin II (NpSRII) from Natronobacterium pharaonis. We use semiempirical molecular orbital theory (MOZYME) to optimize the chromophore within the chromophore binding site, and MNDO-PSDCI molecular orbital theory to calculate the spectroscopic properties. The entire first shell of the chromophore binding site is included in the MNDO-PSDCI SCF calculation, and full single and double configuration interaction is included for the chromophore pi-system. Through a comparison of corresponding calculations on the 1.55 A crystal structure of bacteriorhodopsin (bR), we identify the principal molecular mechanisms, and residues, responsible for the spectral blue shift in NpSRII. We conclude that the major source of the blue shift is associated with the significantly different positions of Arg-72 (Arg-82 in bR) in the two proteins. In NpSRII, this side chain has moved away from the chromophore Schiff base nitrogen and closer to the beta-ionylidene ring. This shift in position transfers this positively charged residue from a region of chromophore destabilization in bR to a region of chromophore stabilization in NpSRII, and is responsible for roughly half of the blue shift. Other important contributors include Asp-201, Thr-204, Tyr-174, Trp-76, and W402, the water molecule hydrogen bonded to the Schiff base proton. The W402 contribution, however, is a secondary effect that can be traced to the transposition of Arg-72. Indeed, secondary interactions among the residues contribute significantly to the properties of the binding site. We attribute the increased vibronic structure in NpSRII to the loss of Arg-72 dynamic inhomogeneity, and an increase in the intensity of the second excited (1)A(g)(-) -like state, which now appears as a separate feature within the lambda(max) band profile. The strongly allowed (1)B(u)(+)-like state and the higher-energy (1)A(g)(-) -like state are highly mixed in NpSRII, and the latter state borrows intensity from the former to achieve an observable oscillator strength.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号