全文获取类型
收费全文 | 4378篇 |
免费 | 286篇 |
国内免费 | 6篇 |
专业分类
4670篇 |
出版年
2024年 | 4篇 |
2023年 | 19篇 |
2022年 | 53篇 |
2021年 | 91篇 |
2020年 | 48篇 |
2019年 | 80篇 |
2018年 | 113篇 |
2017年 | 105篇 |
2016年 | 169篇 |
2015年 | 214篇 |
2014年 | 275篇 |
2013年 | 316篇 |
2012年 | 384篇 |
2011年 | 393篇 |
2010年 | 209篇 |
2009年 | 210篇 |
2008年 | 306篇 |
2007年 | 253篇 |
2006年 | 191篇 |
2005年 | 189篇 |
2004年 | 183篇 |
2003年 | 185篇 |
2002年 | 140篇 |
2001年 | 126篇 |
2000年 | 108篇 |
1999年 | 77篇 |
1998年 | 35篇 |
1997年 | 20篇 |
1996年 | 31篇 |
1995年 | 17篇 |
1994年 | 13篇 |
1993年 | 12篇 |
1992年 | 26篇 |
1991年 | 25篇 |
1990年 | 10篇 |
1989年 | 14篇 |
1988年 | 8篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1975年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
1965年 | 1篇 |
1963年 | 1篇 |
排序方式: 共有4670条查询结果,搜索用时 15 毫秒
131.
132.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Ubr1p, the recognition (E3) component of the Saccharomyces cerevisiae N-end rule pathway, contains at least two substrate-binding sites. The type 1 site is specific for N-terminal basic residues Arg, Lys, and His. The type 2 site is specific for N-terminal bulky hydrophobic residues Phe, Leu, Trp, Tyr, and Ile. Previous work has shown that dipeptides bearing either type 1 or type 2 N-terminal residues act as weak but specific inhibitors of the N-end rule pathway. We took advantage of the two-site architecture of Ubr1p to explore the feasibility of bivalent N-end rule inhibitors, whose expected higher efficacy would result from higher affinity of the cooperative (bivalent) binding to Ubr1p. The inhibitor comprised mixed tetramers of beta-galactosidase that bore both N-terminal Arg (type 1 residue) and N-terminal Leu (type 2 residue) but that were resistant to proteolysis in vivo. Expression of these constructs in S. cerevisiae inhibited the N-end rule pathway much more strongly than the expression of otherwise identical beta-galactosidase tetramers whose N-terminal residues were exclusively Arg or exclusively Leu. In addition to demonstrating spatial proximity between the type 1 and type 2 substrate-binding sites of Ubr1p, these results provide a route to high affinity inhibitors of the N-end rule pathway. 相似文献
133.
Recent studies have identified a beta-cell insulin receptor that functions in the regulation of protein translation and mitogenic signaling similar to that described for insulin-sensitive cells. These findings have raised the novel possibility that beta-cells may exhibit insulin resistance similar to skeletal muscle, liver, and fat. To test this hypothesis, the effects of tumor necrosis factor-alpha (TNFalpha), a cytokine proposed to mediate insulin resistance by interfering with insulin signaling at the level of the insulin receptor and its substrates, was evaluated. TNFalpha inhibited p70(s6k) activation by glucose-stimulated beta-cells of the islets of Langerhans in a dose- and time-dependent manner, with maximal inhibition observed at approximately 20-50 ng/ml, detected after 24 and 48 h of exposure. Exogenous insulin failed to prevent TNFalpha-induced inhibition of p70(s6k), suggesting a defect in the insulin signaling pathway. To further define mechanisms responsible for this inhibition and also to exclude cytokine-induced nitric oxide (NO) as a mediator, the ability of exogenous or endogenous insulin +/- inhibitors of nitric-oxide synthase (NOS) activity, aminoguanidine or N-monomethyl-L-arginine, was evaluated. Unexpectedly, TNFalpha and also interleukin 1 (IL-1)-induced inhibition of p70(s6k) was completely prevented by inhibitors that block NO production. Western blot analysis verified inducible NOS (iNOS) expression after TNFalpha exposure. Furthermore, the ability of IL-1 receptor antagonist protein, IRAP, to block TNFalpha-induced inhibition of p70(s6k) indicated that activation of intra-islet macrophages and the release of IL-1 that induces iNOS expression in beta-cells was responsible for the inhibitory effects of TNFalpha. This mechanism was confirmed by the ability of the peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta12, 14-prostaglandin J2 to attenuate TNFalpha-induced insulin resistance by down-regulating iNOS expression and/or blocking IL-1 release from activated macrophages. Overall, TNFalpha-mediated insulin resistance in beta-cells is characterized by a global inhibition of metabolism mediated by NO differing from that proposed for this proinflammatory cytokine in insulin-sensitive cells. 相似文献
134.
Cho BO Jin CH Park YD Ryu HW Byun MW Seo KI Jeong IY 《Bioscience, biotechnology, and biochemistry》2011,75(7):1306-1311
Isoegomaketone (IK) is an essential oil component of Perilla frutescens (L.), but the mechanism by which IK induces apoptosis has never been studied. The purpose of this study was to elucidate the IK-induced apoptotic pathway in DLD1 human colon cancer cells. We observed that IK treatment over 24 h significantly inhibited cell viability in a dose-dependent manner. We also found that IK triggered cleavage of PARP. Moreover, IK treatment resulted in cleavage of caspase-8, -9, and -3 in a dose- and time-dependent manner. IK treatment also resulted in cleavage of Bid and translocation of Bax, and triggered the release of cytochrome c from the mitochondria to the cytoplasm. Furthermore, it resulted in the translocation of apoptosis inducing factor (AIF), a caspase-independent mitochondrial apoptosis factor, from the mitochondria into the nucleus. Overall, these results suggest that IK induces apoptosis through caspase-dependent and capase-independent pathways in DLD1 cells. 相似文献
135.
Peter Chi Youngho Kwon Dana N. Moses Changhyun Seong Michael G. Sehorn Akhilesh K. Singh Hideo Tsubouchi Eric C. Greene Hannah L. Klein Patrick Sung 《DNA Repair》2009,8(2):279-284
Genetic studies in budding and fission yeasts have provided evidence that Rdh54, a Swi2/Snf2-like factor, synergizes with the Dmc1 recombinase to mediate inter-homologue recombination during meiosis. Rdh54 associates with Dmc1 in the yeast two-hybrid assay, but whether the Rdh54–Dmc1 interaction is direct and the manner in which these two recombination factors may functionally co-operate to accomplish their biological task have not yet been defined. Here, using purified Schizosaccharomyces pombe proteins, we demonstrate complex formation between Rdh54 and Dmc1 and enhancement of the recombinase activity of Dmc1 by Rdh54. Consistent with published cytological and chromatin immunoprecipitation data that implicate Rdh54 in preventing the non-specific association of Dmc1 with chromatin, we show here that Rdh54 mediates the efficient removal of Dmc1 from dsDNA. These functional attributes of Rdh54 are reliant on its ATPase function. The results presented herein provide valuable information concerning the Rdh54–Dmc1 protein pair that is germane for understanding their role in meiotic recombination. The biochemical systems established in this study should be useful for the continuing dissection of the action mechanism of Rdh54 and Dmc1. 相似文献
136.
Dependence on the Lazaro phosphatidic acid phosphatase for the maximum light response 总被引:2,自引:0,他引:2
The Drosophila phototransduction cascade serves as a paradigm for characterizing the regulation of sensory signaling and TRP channels in vivo . Activation of these channels requires phospholipase C (PLC) and may depend on subsequent production of diacylglycerol (DAG) and downstream metabolites . DAG could potentially be produced through a second pathway involving the combined activities of a phospholipase D (PLD) and a phosphatidic acid (PA) phosphatase (PAP). However, a role for a PAP in the regulation of TRP channels has not been described. Here, we report the identification of a PAP, referred to as Lazaro (Laza). Mutations in laza caused a reduction in the light response and faster termination kinetics. Loss of laza suppressed the severity of the phenotype caused by mutation of the DAG kinase, RDGA , indicating that Laza functions in opposition to RDGA. We also showed that the retinal degeneration resulting from overexpression of the PLD was suppressed by elimination of Laza. These data demonstrate a requirement for a PLD/PAP-dependent pathway for achieving the maximal light response. The genetic interactions with both rdgA and Pld indicate that Laza functions in the convergence of both PLC- and PLD-coupled signaling in vivo. 相似文献
137.
In-Chang Jang Soo-Young Park Kee-Yeun Kim Suk-Yoon Kwon Jong-Guk Kim Sang-Soo Kwak 《Plant Physiology and Biochemistry》2004,42(5):451-455
To understand the function of each peroxidase (POD, EC 1.11.1.7) in terms of biotic stress, changes in POD specific activity and expression of 10 POD genes were investigated in four cultivars of sweetpotato (Ipomoea batatas) after infection with Pectobacterium chrysanthemi. POD specific activity (units mg(-1) protein) increased from 16 h after inoculation (HAI) in three varieties. POD activities of two cultivars, Shinwhangmi and White Star, reached a maximum level at 24 HAI by about three times compared to mock treatment (MT), and then decreased, whereas those of Zami and Yulmi continuously increased until 36 HAI. Native gel analysis revealed that one POD isoenzyme with a high electrophoretic mobility significantly increased in response to pathogen infection in all cultivars. Additionally, 10 POD genes displayed differential expression patterns upon bacterial infection by northern analysis. Several POD genes such as swpa2, swpa3, swpa4, swpa5, swpb1 were induced upon bacterial infection, but other genes were not. Particularly, swpa4 gene was markedly expressed in response to bacterial infection in four different cultivars, suggesting that this gene has a stress-inducible promoter. These results indicate that some specific POD isoenzymes are involved in defense in relation to pathogenesis of P. chrysanthemi in sweetpotato plants. 相似文献
138.
A protocol for rapid and efficient plant regeneration from protoplasts of red cabbage was developed by a novel nurse culture method. When the protoplasts of red cabbage were cultured in modified MS medium containing various combinations of BA, NAA and 2,4-D, they did not continue dividing due to browning. However, they successfully divided and formed micro-calli at a high efficiency when they were mixed and co-cultured with those of tuber mustard at a 1:1 ratio. The presence of tuber mustard protoplasts used as nurse cells was essential for sustainable divisions and colony formation of red cabbage protoplasts. Red cabbage-like plantlets were regenerated from these protoplast-derived calli at a frequency ranging from 33 to 56% in all the experiments where three cultivars of red cabbage were tested. Over 120 protoplast-derived cabbage plants were transferred to the greenhouse, and they showed no noticeable abnormalities in morphological features. Chromosome observation revealed that all of the plants examined had the normal chromosome number of cabbage (2n = 18), suggesting that no spontaneous fusion between the two species had occurred during protoplast culture. 相似文献
139.
Hydrazinocurcumin,a novel synthetic curcumin derivative,is a potent inhibitor of endothelial cell proliferation 总被引:2,自引:0,他引:2
Shim JS Kim DH Jung HJ Kim JH Lim D Lee SK Kim KW Ahn JW Yoo JS Rho JR Shin J Kwon HJ 《Bioorganic & medicinal chemistry》2002,10(8):2439-2444
Curcumin and some of its derivatives were known as in vivo inhibitors of angiogenesis. In present study, a novel curcumin derivative, named hydrazinocurcumin (HC) was synthesized and examined for its biological activities. HC potently inhibited the proliferation of bovine aortic endothelial cells (BAECs) at a nanomolar concentration (IC(50)=520 nM) without cytotoxicity. In vivo and in vitro angiogenesis experiments showed HC as a new candidate for anti-angiogenic agent. 相似文献
140.
Carnosine, homocarnosine, and anserine are present in high concentrations in the muscle and brain of many animals and humans. Previous studies showed that these compounds have an antioxidant function. We investigated the protective effects of carnosine and related compounds on the modification of human ceruloplasmin that is induced by H2O2. Carnosine, homocarnosine, and anserine significantly inhibited the fragmentation and inactivation of ceruloplasmin that is induced by H2O2. All three compounds also inhibited the release of copper ion from protein, and the formation of hydroxyl radicals in the ceruloplasmin/H2O2 system. These compounds inhibited the fragmentation of human serum albumin that is induced by the copper-catalyzed oxidation system, as well as by the iron-catalyzed oxidation system. These results suggest that carnosine, homocarnosine, and anserine might protect ceruloplasmin against H2O2-mediated oxidative damage through a combination of copper chelation and free radical scavenging. 相似文献